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Summary

A finite-difference method is used to investigate compressible, laminar
boundary-layer flows of a dilute dusty gas over a semi-infinite flat plate.
Details are given of the implicit finite-difference schemes as well as the
boundary conditions, initial conditions and compatibility conditions for
solving the gas-particle boundary-layer equations. The flow profiles for
both the gas and particle phases were obtained numerically along the whole
length of the plate from the leading edge to far downstream of it, The
finite-difference solutions in the large-slip region and the small-slip
region are compared with the asymptotic solutions and good agreement is
achieved. The boundary-layer characteristics of interest, including the
wall shear stress, the wall heat-transfer rate and the displacement
thickness, are calculated. The alteration of the flow properties owing to
the presence of particles is discussed in detail. It was found that the
boundary-layer flow of a dusty gas can be divided into three distinct flow
regimes which are characterized by quasi-frozen, nonequilibrium and
quasi-equilibrium flows and that at a critical distance from the leading
edge the particle velocity at the wall decelerates to zero and
near-equilibrium is achieved between the gas and particle flows., For the
laminar boundary 1layer of a dusty gas, the shear stress and the
heat-transfer at the wall are increased and the displacement thickness is

decreased compared with the pure-gas case alone.
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Notation

coefficients of the finite-difference equations, Eqs;

?gif4farameters for the six-point difference scheme, Eq.

coefficient for fitting
1

a polynomial to the gas temperature
near the wall, Eq. (5.11)

coefficient for fitting a polynomial to the gas velocity
near the wall, Eq. (5.10?

coefficients of the finite-difference equations, Eqgs.

?rid parameters for the six-point difference scheme, Eq.

coefficient for fitting a polynomial to the gas temperature
near the wall, Eq. (5.11)

coefficient for fitting a polynomial to the gas velocity
near the wall, Eq. (5.10)

general drag coefficient for a sphere in a viscous fluid
Stokesian drag coefficient for a sphere in a viscous fluid
coefficients of the finite-difference equations, Egs.
(3.12)-(3.20) and (3.26)-(3.27)

grid farameters for the six-point difference scheme, Eq.
(3.14

specific heat at constant pressure for the gas phase
specific heat for the particle phase

coefficient for fitting a polynomial to the gas temperature
near the wall, Eq. (5.11)

coefficient for fitting a polynomial to the gas velocity
near the wall, Eq. (5.10)

normalized drag coefficient for a sphere in a viscous
fluid
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9*3‘? Dy, coefficients of the finite-difference equations, Egs.
(3.12)-(3.20) and (3.26)-(3.27)
150t
::;.‘3 d diameter of the particles
Q
o
.:; d, rid parameters for the six-point difference scheme, Eq.
:,ge‘, ?3.14
e dr coefficient for fitting a polynomial to the gas temperature i
XY near the wall, Eq. (5.11)
el
-".:: dy coefficient for fitting a polynomial to the gas velocity
"::,: near the wall, Eq. (5.10?
AN
Ec gas Eckert number based on the freestream temperature,
W Ec = ux?/cyTy
o i
:‘ En recurrence coefficients in the Thomas algorithm, Eq. (4.1)
:» F integrated function of the nondimensional displacement
i thickness, Eq. (5.14)
‘ i
Eﬁ Fn recurrence coefficients in the Thomas algorithm, Eq. (4.1)
j‘,. f transformation function for the asymptotic solution
i
e G, recurrence coefficients in the Thomas algorithm, Eq. (4.1)
B 3"
108 K ratio of consecutive step sizes in the y-direction,
g K= byn/&yn-y
L34
k heat conductivity for the gas phase
.
j':'-" m grid Tine in the y-direction
::::: N grid point at the outer edge of the boundary layer
Y
Nu Nusselt number based on the particle diameter
. n grid line in the x-diretion
e Pr gas Prandtl number, Pr = chu*/k*
[ X
L
— p gas pressure
3(, .
::;_( q heat-transfer rate
L8
L R gas constant
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Re,

X

Y

Greek Symbols

a

B

w

Subscripts

asy

flow Reynolds number based on the particle equilibrium
length, Re, = pfuiAy/p}

temperature

tangential velocity in the x-direction

normal velocity in the y-direction

function representing any flow property, u, v, por T
coordinate along the wall

coordinate normal to the wall

ratio of the specific heats for the two phases, a = CB/CE

mass loading ratio of the particles in the freestream,
B=pp /0%

displacement thickness of the boundary layer

small quantity used in testing for the outer edge of the
boundary layer, Eq. (4.6)

similarity variable for the asymptotic solution
weighting factor for the finite-difference schemes
particle velocity-equilibrium length, A% = p¥d* Art/18u%
dynamic viscosity for the gas phase

derivative of the gas viscosity with respect to the gas
temperature, p' = dp/dT

density
density of the particle material
shear stress

power index for the gas viscosity

asymptotic solution
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Superscripts

*

critical point

grid line in the y-direction

grid line in the x-direction

particle

slip quanti
wall condit
freestream

initial con

dimensional

index for

ty
ions
conditions

ditions

dependent variables:

=1, 2, 3, 4, 5,

represent u, T, Ups Vps Tp and Pps respectively
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1, INTRODUCTION

Boundary-layer flows of a dusty gas have been investigated using several
analytical methods: a series method [1-7], an integral method [8-11], and a
finite-difference method [12-15]. A1l the work mentioned above, however,
dealt with incompressible-flow cases for the ga: phase. Very few authors
[16-18] considered the problems of compressible boundary-layer flows where
the density of the gas phase can be changed due to compressibility. As
pointed out by Singleton [17], Chiu [16] employed incorrect boundary-layer
equations and assumed that the particle density is constant. Singleton
extended Marble's analysis [1] to compressible boundary-layer flows. He
applied the ciordinate perturbation method and obtained asymptotic solutions
for two limiting regions (see Fig. 1): for the large-slip (or quasi-frozen)
region near the Jleading edge (I) and for the small-slip (or
quasi-equilibrium) region far downstream of the leading edge (III). Zhao
[18] used a similar series-expansion method and improved Singleton's
analysis. However, these series solutions in the form of asymptotic
expansions could provide only one term in addition to the frozen or
equilibrium-flow values, owing to the complexity of the problem. Moreover,
this solution does not provide any information on the boundary-layer
development 1in the nonequilibrium transition region where the slip is
moderate. A thorough understanding of the compressible dusty-gas
boundary-layer over the entire-flow region is important, since these flows
have practical applications in many scientific and technical fields such as
solid rocket exhaust nozzles, nuclear reactors with gas-solid feeds,
ablation cooling, blast waves moving over the Earth's surface, conveying of
powdered materials, fluidized bed and environmental pollution, as mentioned
in Refs. [12, 19].

In the present paper, the behaviour of compressible, Tlaminar
boundary-layer flows of a dusty gas over a semi-infinite flat plate along
the whole length of the plate is studied using a finite-difference method.
The problem of two-phase suspension flows is solved in the framework of a
model of two interpenetrating and interacting continuous media, which is
called a two-way coupling model or a two-fluid approach [20,21]. The
following assumptions are made in this analysis: (1) The gas-particle
mixture is a dilute system where the volume fraction of the particlie phase
is neglected. (2) The gas phase is a perfect gas. (3) The particles are
spheres of uniform size without random kinetic motion. There are no mutual
collisions or other interactions among the particles. (4) Only the drag and
heat-transfer processes couple the particles to the gas. The momentum and
energy exchange between the two phases can be calculated from available
analytical solutions for the viscous flow field around a single sphere,

Finite-difference methods of solution of single-phase boundary-layer
equations have been studied for many years. A review of this work is given
in Ref,., [22]. Flugge-Lotz and Blottner [23] developed an implicit
difference technique. They used a six-point scheme for the momentum and
energy equations and a four-point scheme for the continuity equation. This
finite-difference procedure was applied successfully to various studies of

’»‘,A" - & 'ﬂ‘ " '.‘u.“_ W '\-,‘yn . X .. : !.-\-«.1 WA Y . 2
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pure-gas boundary-layer flows. However, in the dusty-gas case, the nature
of the governing equations requires some changes which result in
considerable complexity. First, in addition to some new interaction terms
in the conservation equations for the gas phase, there is an extra set of
conservation equations for the particle phase. The partial differential
equations for the gas phase are of second order, while those for the
particle phase are of first order. Secondly, there is no correponding state
equation for the particle phase, since the particle phase has no analog of
flow pressure, In order to close the system of basic equations, the
y-momentum equation for the particle phase cannot be omitted as for the gas
phase. Finally, the flow properties of the particles present quite
different features in different flow regions. In the near leading-edge
region, very Jlarge velocity slip and temperature defect between the two
phases appear, whereas a quasi-equilibrium state can be reached in the
far-downstream region where the flow profiles for the two phases are almost
the same. Between these two regions, there is a transition region which is
characterized by a nonequilibrium flow. In general, the two phases in this
region have moderate differences in velocity and temperature across the
boundary layer. It is interesting to note that in the transition region,
there exists a special position along the flat plate, which is defined as
the critical point in this analysis. At the critical point, the tangential
velocity of the particles at the wall vanishes, that is, there is no slip
between the particles and the gas. This is due to the fact that in the
two-phase boundary layer, the gas decelerates from its freestream velocity
at the outer edge to zero at the wall and then the particles are retarded by
the gas. The velocity of the particles at the wall may be reduced to zero
provided the distance is long enough for the particles to adjust to the gas.
0Of course, equalization of the gas and particle velocities at the wall does
not mean that the disparity of the two phases has died out because across
the boundary layer, equilibrium between the particles and the gas is still
not attained. Nevertheless, it can be said that at the critical point, the
two-phase system completes essentially the transition from a nonequilibrium
flow to an equilibrium flow, since the equilibrium state is reached first on
the surface of the plate and this process is continued until the two phases
are in equilibrium across the whole boundary layer far downstream. As the
particles are slowed down, the density of the particle phase near the wall
increases. When the particle velocity becomes zero, the particles tend to
accumulate at the wall. In other words, deposition of the particles at the
wall may occur if there is no diffusion. Therefore, as discussed by Soo
(24,25], there are two possible situations when the particle velocity
decelerates to near zero:

(1) For large particles, their Brownian motion is neglected, the particles
slowed down at the wall will deposit and form a sliding layer (or bed of
particles). This compacted layer may build up or erode away, and even a
steady equilibrium condition may be achieved when the shear stresses in
this dense layer of the particulate matter and in the suspension mixture
are equalized. The velocity at which such a layer moves depends on the
materials and surfaces of the particles and the wall. Because of
deposition of the particle phase, the density of the particles at the
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wall becomes very large. However, if the particle density is too high,
the present analysis will fail since the assumptions concerning the
interactions between the two phases or among the particles in this paper
can be considered correct just for a dilute gas-particle system.

e

R
)

'ﬂ (2) For small particles, the Brownian diffusion is significant in the region
. near the wall, although the intensity of Brownian motion of the
? particulate cloud is wusually small across the boundary 1layer. The
Y density of the particle phase at the wall is then controlled by the
Brownian diffusion process. The layer of deposited particles may not
exist at all because the diffusion due to the Brownian motion prevents
the formation of a dense bed of particles. It is shown in Soo's
o analyses that, if the Schmidt number of the particle Brownian diffusion
ol is of order unity or less, the whole two-phase system hehaves like a
’ gaseous mixture and the density profiles for the particle phase reduces
& to its original one as in the freestream. Soo studied only the
Q incompressible boundary-layer case. Marble [1,26] treated the
2w case of compressible flows and obtained a similar result, Some other
: studies [17,18] on the compressible boundary-layer flow of a
k) gas-particle mixture came to the same conclusion. From the asymptotic
solution for the small-slip limit, it is found that the zeroth-order
approximation of the dimensioniess density for the particle phase is the
same as that for the gas phase. This means that the loading ratio of
the particles is constant across the boundary layer and equal to its
original value in the freestream. Physically, in this quasi-equilibrium
flow region, the particles always remain attached or fixed to their
b original gas mass and move together with the gas. Then the gas-particle
mixture behaves like a perfect gas with the modified properties. This
Ko, implies that the flow process in the small-slip region is mainly
W diffusion-controlled for both the gas and particles. Therefore, in this
paper, it is assumed that, after the critical point, the particle
o density is determined from the gas density and the loading ratio. Using
! these considerations, the finite-difference schemes for the dusty-gas
i} boundary-layer flows can bhe constructed. In this analysis, the
. finite-difference scheme developed by Flugge-Lotz and Blottner [22,23]
were employed for the gas phase. For the particle phase, a four-point
scheme was used. For comparison, the six-point scheme was used to solve
the x-momentum and energy equations of the particles, employing
additional boundary conditions obtained from the compatibility
conditions, After the critical point, very simple compatibility
o conditions for the tangential velocity and temperature of the particles
can be derived: at the wall, the particles have the same velocity and

- temperature as the gas.

With this finite-difference scheme, the flow properties of the dusty-gas
boundary layer over the entire length of a semi-infinite flat-plate were
calculated numerically. The flow profiles of u, v and T for the two phases
are presented at different distances from the leading edge. From these
results, it 1is shown that the boundary-layer flows of a dusty gas have
different characteristics in the three distinct regions. In the large-slip
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j{ﬁ‘ region, the particles have a little deviation from their freestream uniform
_}:{ motion and then the differences in the flow quantities of the two phases are
;f&l quite large. While slipping through the gas downstream, interaction between
R the two phases increases the gas velocity and temperature but decreases the
. particle velocity and temperature as well. Thus, in the transition region,
:&' the differences in the flow properties of the two phases are significantly ,
%fﬂ, reduced. Of course, the particles and the gas are still in nonequilibrium. «
§$ ? In this region, the velocity slip and temperature defect are moderate ;
HE compared with those in the other two limiting regions. In the small-slip ]
e region far downstream, the flow profiles for the particle phase become 4
PR almost identical with those for the gas phase, that is, the two phases
‘:g: approach nearly equilibrium and the slip quantities are very small. In
:5_ fact, the only reason the particles do not actually attain the local gas
ﬁk& velocity and temperature is that slip is induced along the gas streamlines
R by the gas retardation associated with thickening of the gas boundary layer.
. In addition to the flow profiles of u, v and T, some boundary-layer
J éf characteristic quantities of interest, i.e., the shear stress and
;$:$ heat-transfer rate at the wall and the displacement thickness, are
N calculated in this analysis. It is noted that owing to the presence of the
B2 particles, the shear stress and heat transfer increase while the
displacement thickness decreases in the case of laminar boundary-layer
::q flows, since the interaction between the gas and particles causes an
‘;%; increase in the gas velocity and temperature.
:’ff In this paper, the quasi-frozen flow properties in the near leading-edge
Wk region and the quasi-equilibrium flow properties in the far-downstream
X region were compared with the corresponding asymptotic values [27]. The
o agreement was very good. For the finite-difference solution in the
Y 3 nonequilibrium transition region, it is found that the results are
> 5 physically reasonable. Although it is not possible at present to make any
WY direct comparison between our finite-difference solution and other relevant
- results, since there are no experimental or other analytical data available
:j for the nonequilibrium-flow region. Nevertheless, the fact that the
S8 finite-difference solution in the far-downstream region agrees quite well
'5:v with the asymptotic small-slip solution provides confidence in the
zﬁﬁ difference solution for this transition region, since the boundary-layer
B equations are parabolic, which is classified as a marching problem [30].
»:h; Thus, the solution procedure of finite difference begins with certain
£y initial profiles at or near the leading edge, then through the large-slip
I region, the transition region, and finally ends in the small-slip region

downstream, It is clear that the finite-difference solution for the
small-slip region would not be correct if there were some mistakes in the
difference solution for the transition region,

The numerical study of boundary-layer flows in dusty gases provides a
good introduction to the dynamics of a two-phase system. The quasi-frozen
flow, nonequilibrium flow and quasi-equilibrium flow are all encountered and
analysed using the finite-difference method. The difference solution gives
the complete and exact information about modifications of the boundary-layer
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flows due to gas-particle interaction. Moreover, it provides a basis for
the experimental investigation of dusty-gas boundary-layer flows.

2. MATHEMATICAL DESCRIPTION OF COMPRESSIBLE, LAMINAR, DUSTY-GAS BOUNDARY-
LAYER FLOWS

The basic boundary-layer equations for steady, two-dimensional,
compressible, laminar, dusty-gas flows over a flat plate are given by [27]

Continuity:
O pru* + B oryx = 0 2.1
Ax* P y* e (2.1)
Momentum:
du* u*y . @ au* *_*u:p*
or(ur =5+ v* ay*) 5 (w* ay*) + gy (us - ur) 7\?.3‘50 (2.2)
Energy:
aT* oT*y . B AT w (U2 L gk o yr) 2
el StV ) Ty K ge) P E) el - )
b (vr - ve) 2] Yo w1 prcx(T* - T*) B (2.3)
p AE ux 3pr PPP T
State:
p* = p*R*T* (2.4)
for the gas phase, and
Continuity:
0 .k % 0 ok yk =
> op up * > o Vp C (2.5)
i
x-momentum:
ou* u* u¥ o«
* * * = e * * o * _.:’E— .
pp(up E&g + vy Egg) pp(up u*) = D (2.6)
y-momentum:
ov* wvx u* .
* * * = ~p* * o * _:L .
pp(up 3;2 + v Egg) pp(vp v*) = D (2.7)
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)¢ Energy:
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) aT* AT* *
5 * ok 0P 4 oyk OP) = o L ok oex(Ta - Tay Ue ¥
Y o3 cs(up = TV ay*) = % cp(Tp T*) % Nu (2.8)
‘l
&é for the particle phase. In the equations above, the particle velocity-
$§ equilibrium length A% is
8
L)
2
i AKX = P 4 u¥
=7 T e
‘t
’éj The starred quantities in Eqs. (2.1)-(2.8) have dimensions. The
M) independent variables are the space coordinates x* and y* which are parallel
gﬂ and perpendicular to the wall, respectively. The dependent variables are
e the density p*, the velocity components u* and v* and the temperature T* for
the gas phase as well as the corresponding quantities p%, u%, VS and T* for

1 the particle phase. For the flat-plate boundary layer, the gas pressuEe p*
s is constant and equal to its freestream value. Hence, in the dusty-gas
;dﬁ boundary-layer problem, there are eight simultaneous equations with eight
{% unknowns so that this system is closed. Of course, it is required that the

‘ other physical quantities appearing in Egqs. (2.1)-(2.8) are known functions

of the flow variables. The normalized drag coefficient D and the Nusselt

N number Nu can be expressed in terms of the slip Reynolds number and the
;' Prandtl number, Here, the normalized drag coefficient D is defined as
b
M c

+ p =0 (2.9)
“ Cp
et 0
4 where Cp and Cp are the real drag coefficient for the flow situation under
! d consideration anfl the drag coefficient from the Stokes relation. In this

L}

analysis, only Stokes' relation is used and consequently D = 1,0 and Nu =
2.0. Regarding the thermodynamic properties, the following assumptions are
made: (1) The specific heats for the gas and particle phases (c} and c¥)
are constant; (2) the Prandtl number of the gas (Pr) is constant; (3) the
viscosity coefficient of the gas (u*) has a power-law form with temperature,

:2. Consequently, the expression for the gas viscosity is given by

. T* w

[ * =

Y W= sl (2.10)

}‘ ®
Al
;*ﬁ where w is the power index for the viscosity coefficient.
e It is advantageous to write the basic equations and relative expressions
,s“ in nondimensional form before the numerical computations are performed. For
atl the investigation of two-phase boundary-layer flows, it is convenient to
:sb choose the velocity-equilibrium length A* as the characteristic length, and
Wy the following nondimensional quantities are defined,
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X = l‘:, y = yr Re .,
AR A%
u = Ut v=Y Re,, o= B = I*
m I % T
(2.11)
u* vE o * T*
u =B, v =2 Re,, op=£9. T, =B,
pu% p Uk px Py
*
b=t
114

where the flow Reynolds number based on the particie velocity-equilibrium
length Re, is

Re = P2 U= N

@

Tl

Now, a nondimensional form of the boundary-layer equations results in

)
+ 92 =0 2.12
bXpu ay‘" ( )
oy oy Yy %y dp BTy, - 2.13
p(u Y ay) “ay2 (dT ay)ay Ay (ug = u)D (2.13)
oa,,d =,“__QEI + Ecp(H) +E -’
Pt V) T oy 2 o & (by) el ) c#p[(up - )
1
+ -R"e—; (Vp ]UD + ——— pp( p - T)L\NU (2'14)
=1
= -— 2.15
- ( )
u +_a- oVp = 0 (2.16)
ax pp ay P
7

i .




au
55 7 (up - v (2.17)
::';‘.5: u. —P +y EV.P. = -(vp - v)ud (2.18)

aT ol
_—E— _-E S - __g__ - . -
u + v 5 3Pr (Tp T) uNu (2.19)

X\ where the gas Eckert number Ec, the gas Prandtl number Pr and the ratio of
o) specific heats for the two phases a are respectively defined as

u:‘2 c*x u* c*

Pr =P a=_P

1“{‘ Ec * Tx° *

Ve
;ﬁﬁ The viscosity relation in nondimensional form can be written as
p=T® (2.20)

(s In order to obtain a unique solution to the problem, it is necessary to
24 satisfy the boundary conditions. Inspecting the basic equations
ety (2.12)-(2.19), there are seven partial differential equations and two of
them are of second order., Therefore, nine boundary conditions should be
specified. If the partcle phase is in equilibrium with the gas phase in the
external flow, the nondimensional boundary conditions are given by:

(1) At the wall of the flat plate
u(x, 0) =0, v(x, 0) =0, T(x, 0) = Ty»

X (2.21)
t‘aS:‘\ Vp(X,O) =0

(2) At the outer edge of the boundary layer
N (2.22)
drf where the mass loading ratio of the particles B is
4 ' 4
P

ot B=

*
i .Ah f p w
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N Besides, owing to the parabolic character of boundary-layer equations,
KL the initial profiles of the dependent variables are required across the |
e boundary layer at some point xg: |
i |
W u{xg, ¥) = ugly), vixg, y) = voly) |
5

Y T(xgs y) = Toly)s plxgs ¥) = poly)

. (2.23)
) (xor ¥) = up (¥)s  Vp(xgs ¥) = vy (¥)

Up X0, Y p0y9 p 0s Y poy

5 - =
:"f Tolxos ¥} = Tp (¥)s eplxgs ¥) = pp (¥) J
ﬁ: At the initial position x,, the finite-difference solution procedure starts |
I and then proceeds downstream.
b 3. FINITE-DIFFERENCE SCHEMES AND RESULTING FINITE-DIFFERENCE EQUATIONS
0
)
ut The basic boundary-layer equations (2.12)-(2.19) with the boundary
b conditions (2.21)-(2.22) and the initial conditions (2.23) can be solved
" numerically wusing a finite-difference method. In this way, the
K partial differential equations are approximated by finite-difference
: equations and the flow field is divided into a rectangular grid or mesh.
b Generally, either equal or unequal intervals can be used. In this report,

equal intervals in the x-direction and unequal intervals in the y-direction
were used in order to reduce the computation time (see Fig. 2). The step

o size in the y-direction was increased in a geometric progression as

5

. A

B yn-K

" &n-1

o where K is a constant and it is set with a value slightly greater than

unity, When K = 1,0, the unequali-interval mesh reduces to an equal-interval
mesh. In the difference procedure, it is assumed that the flow quantities
are known at the grid points in the column (m) and unknown at the grid
points in the column (m+l). The computation starts stepwise downstream with
the initial profiles,

‘A

When the finite-difference scheme is employed, the derivatives are
replaced by difference quotients. There are numerous ways of constructing
difference quotients. For the sake of stability, implicit schemes, which
can be six-point or four-point, are used in this analysis [28].

-
s

e

For the momentum and energy equations of the gas phase, a six-point
difference scheme was used. With this scheme, six grid points {m, n-1),
(my, n), (m, n+l), (m+*l, n-1), (ml, n) and (m+l, n+l) are involved. Any
function w(x, y) and its derivatives are evaluated at a mid-point (m+6, n):

-

e L's aa"a

W= oW + (1-6eW (3.1)

m+1l,n m,n

N VS AR - "SR T AN -A‘-F‘ "
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(wm+1,n - “m,n) (3.2)

I 2 2
% - ToTE, et (KD g - K oy ]

1-6
' (K+1) oy, [Wn,ne1 + (K210 - szm,n-ll (3.3)

22 . 2«
ay2  (K+1)ay,?

[Nm+1,n+1 - (K+1)Nm+1,n + me+1,n-1]

+ _2(1-9)K (W ne1 = (K¥1Wp oo+ KW g ] (3.4)
(K+1) Ay, 2

where the weighting factor © can be chosen as any value between zero and
unity. When 6 = 0.5, it reduces to the six-point Crank-Nicolson scheme
where the truncation error is of order (Ax2) [29]. When © takes the value
of zero or unity, it gives the full explicit or implicit scheme,
respectively. The last two schemes involve only four grid points and have a
truncation error of order (Ax). But with respect to the variable y, all
three schemes above are of second order (4y?2), since the central difference
formula is used for derivatives in the y-direction.

A four-point difference scheme is applied to the gas continuity
equation., In this scheme, four grid points (m, n-1), (m, n), (m*l, n-1) and
(m+l, n) are included and all the values of the function w(x, y) and its
derivatives are calculated at a mid-point (m6, n - 1/2):

W =,% [00Wpe 0 * Wne,n-1) *+ (1-8)(dy o + wm,n_l)] (3.5)
M- 1
x T [(Wm+1,n - wm,n) + (wm+1,n-1 - wm,n-l)] (3.6)
M- _ 8 (u - W y + 128 (y - W ) (3.7)
y By, m+l,n m+1,n-1 byoy  ™n m,n-1-

When & = 0 or 6 = 1 in the above formulae, the truncation error in the
x-direction is of order {Ax). When 6 = 0.5, the scheme is known as the
four-point Wendroff scheme and the truncation error in the x-direction is of
second order (Ax2) [29]. However, from experience in the present analysis,
the Wendroff scheme may produce an oscillation in the normal velocity of the

10

oot

R el



gas phase. It was found that this oscillation problem can be avoided by
using 8 = 0,75, which produces a discretization error of order (ax!e®). 1In
the y-direction, this four-point scheme has a truncation error of order
(ay?) as in the six-point scheme.

For the particle phase, due to the stability requirement, the
y-derivatives are approximated by backward difference quotients instead of
the central difference quotients which are used in the above schemes for the
gas. Then, another four-point difference scheme for the particles is
constructed as follows. The function w(x, y) and its derivatives are
estimated at the point (w6, n). The derivatives, both in the x- and
y-directions, are replaced by backward quotients.

For the x-momentum, energy and continuity equations of the particles,
the grid points (m, n), (m, n+tl), (m+l, n) and (m+l, n+l) are involved and
the difference scheme is

W = 9Nm+1’n + (l-e)wm’n (3.8)

MW .1

™ B (wm+1,n - wm,n) (3.9)
W - 6 -
M= 5 (W - W + 227 (W - W 3.10
dy iy, ( m+l,n+1 m+1,n) Ayn ( m,n+1 m,n) ( )

For the y-momentum equation, the grid points (m, n), (m, n-1), (m+l, n)
and (m+1l, n-1) are involved and the difference scheme takes another form for
the y-derivative instead of Eq. (3.10)

M. 8w
% by

e LI (I IS (3.11)

1)
m+i,n-1 A-yn-l m,n

m+1l,n

The function w and the x-derivative aW/dx have the same forms as Eqs. (3.8)
and (3.9).

Similarly, when 8 is equal to zero or unity, which represents,
respectively, the explicit or implicit scheme, the above four-point schemes
(3.8)-(3.11) reduce to three-point schemes. These schemes have a truncation
error of first order (&y). For stability consideration, as wmentioned
before, the value of 6 is chosen to be 0,75,

With the above formulae, the finite-difference equations for
compressible, laminar boundary-layer flows of a dusty gas over a
semi-infinite flat plate are given by:

(1) The momentum equation of gas phase,

1 1 1 1

8 * Oy Yme1,n-1 = Dp

+
An Umel,n+l ¥ B Untl,n
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where

=
1

n = Aplev - u.T.y)m*re,n = SnHnto,n

By = () peg,n * ap(K2-1) (pv - u'Ty)mﬂa,n + cp(K+l) upr0,n

+ GAX( %P‘D)maf-l’n

(]
0]

n -anKz(pv - “'Ty)m+e,n - ¢nKHp+ 9,0
Dn = [(pu)me,n = (l-e)AX(ppm)m,n]um’n = bn(pV - u'Ty)m_’_e’nmm’n
+ dn“'m+9,nA2“m,n + &(ppuyiD) 0,0

(2) The energy equation of gas phase,

2 2 2 82 _
An Tm+1,n+1 * By Tm+1,n * Cp Tm+1,n—1 = Dy (n =2, 3,...N-1) (3.13)
where
2 1
Ap = ‘3n(pv - ‘;‘r? Ty)m+6,n - Cn(—;rj)rn+9,n

Bn = (PU)m.,.e’n + an(Kz-l) (pV - ’Pu—r' Ty )m+9,n + Cn(K+1)(%)m+e:n

1
+ O0AX (.3_p.F pp DNU )m""l,n

(e}
"

n = -aKZ(ev -‘gF Ty)m+e,n - CnthF)m+6,n

Dn = [(p\))m+e,n - (1-9)AX(§%-F PpU-NU )m’n ]Tm,n

- by(ev - %? Ty)m+9,n Ban * dn(xr)m+9 nAh.,n
1 1
{Ecu( y)2+Ecp[(p-u)2+§.e_m(vp- )z]un»fwr TuNu}m+en
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For the coefficient D,, the term (v, - v)?/Re_ is a small quantity and can

be neglected. In all the above coefficient expressions, some parameters are
given by

a. = _ O b = (1-8) &

"y, KDy,

Ch = ————» n- ——— .

(K+1) Ay, 2 (K+1) ay, 2

By = Wy ey + (KZ2D)Wg o - K2y ooy (3.14)

Azwm,n = wm,n+1 - (K+1)wm,n + KWy -1
2

(W,,) - wm,n+1 + (K '1)Nm,n - K2wm,n-l

yom,n (K+1) &y,

where the function W represents the flow properties such as velocity,
temperature, density, etc.

(3) The state equation of the gas phase:

P+l ,n = ?.:1_ (n =1, 2,...,N) (3.15)
m+l,n

(4) The continuity equation of the gas phase:

(Pnetn = (Pme1,no1 = 230 [(Mnye = ()n,oo1]

- [(e)e1,n = (Pmn * (P)pey a1 = (PU)p no1 ] (n =2, 3,...N)

(3.16)

(5) The x-momentum equation of the particle phase:

3 3 3
+ B = C = 1, 2,00.N"1 3.17
n upm+1,n+1 n upm+1,n n (0 ) ( )
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where

3
An-e_Ax_vp
Ay, Fm+O,n

BAX
B, = - —V + O
n " YPneg,n ty, Pmte,n (D)1,

1-0) Ax
R Sondl u + u +L______.V
Ay, me+9,n] Pm,n+1 [ Pm+6,n by, Pm+8,n

- (1-0)&x (D) o Jup + &(ukD)pig g

(6) The y-momentum equation of the particle phase,

. st n * B, o1l " . (n =2, 3.0, N) (3.18)
where A: = upm+e,n + iff%f vpm+e,n + OAX(PD)m+1,n

B: = - _Z;g:_’ji. me+9,n

C: ) [upm+9,n . l%éf%fﬁ vpm+9,n ) (1-9)Ax(uD)m,n]vpm,n

' [(1-9)Ax v

\% + Ax{v
AY -1 pm+6,n] Pm,n-1 ( HD)m+o,n

{7) The energy equation of the particle phase,
5 5 5

AT +8. T =C n=1, 2, ..., N-1 3.19
n pm+1,n+l N Pmtl,n n ( ) ( )
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where

S _ e

A, = — P
by, ¥Fm+9,n

5 0.AX Q
B, = u - + BAX (o

" “Pmee,n oy, "Pm+6,n (3Pr W s 1,n

5 Z - (1-6)&( T + + (1-9 A
¢ [ M me+e,n] Pm,n+1 [upm+9,n &y me+e,n

a
- (1-0) ax (5 Uy n Pm ) Ax(é_p.F TuNu Jnt g,

(8) The continuity equation of the particle phase,

5

6

'i‘ ' | . X 1 ! - ‘v - - '- i
* '“‘x»'!-‘\‘i\‘..’!‘.“ﬁbn‘. WL Q..- \ \.’; l'ti s 1;3;;4 JO;

+ = C = 1, 2’ ev ey N'l 3.20
An ppm+1,n+1 B ppm+1,n n (n ) ( )
where
6 _ BAx
AL =22y
" by, Pmte,n
6 82Ax
B, = 26u + (1-26)u + —= v - 2v
n Pm+l,n ( ) Pm,n ay,  Pmtl,n+l pm+1,n)
&y, ( Pm,n+1 pm,n)
¢t =[-8 lo + [(26-1)u 2(1-8)u
n AYq Pm+o,n” Pm,n+l Pm+1,n Pm,n
- 8(1-8) & ¢y -2 _ (1-8) 2ax -2
by, ( Pm+1,n+1 vpm+1,n) by, (vpm,n+1 vpm,n)prm,n

Using the finite-difference equations in the form (3.12)-(3.20), a
stable and convergent numerical solution to the dusty-gas boundary-layer
equations was obtained when x is smaller than x..;. After the critical
point (x » xcri)’ quite simple compatibility conditions were derived for the
particle velocity and temperature. These conditions provided supplemental
boundary conditions at the wall so that the six-point scheme could be used
for the x-momentum and energy equations of the particles when x » Xcpje At
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the wall (y = 0), with the boundary conditions u = 0 and v
and (2.19) become

p = 0, Eqs. (2.17)

—¥ = (D), (3.21)

- T,) (uMu),, (3.22)

u -
Pw ay 3Pr  Pw

These two equations, Egs. (3.21) and (3.22), are termed as compatibility
equations from which compatibility conditions can be derived. From Eq.
(3.21), it is known that, as x increases, the particle velocity at the wall
decreases until it becomes zero. The position of the critical point is
determined by

u } =0 (3.23)

pw(xcri

After the critical point (x » Xcri)» the two phases have zero velocity at
the wall and then the drag vanishes (D, = 0). Thus, for x > x..j, Eq.
(3.21) leads to

u =0 (3.24)

(3.25)

Equation (3.25) is valid for x > x.pj, too. Equations (3.24) and (3.25)
mean that after the critical point the particles and gas are in equilibrium
at the wall. Now, concerning the tangential velocity and temperature of the
particles, there exist two boundary conditions: one is at the wall and the
other is at the outer edge of the boundary layer, as in the case of the gas
phase. For the normal velocity, however, no such simple compatibility
conditions, such as Eqs. (3.24) and (3.25), can be derived.

With the six-point scheme, the x-momentum and energy equations of the
particle phase are replaced by the following difference equations:

(1) Momentum:

7 7 7 7
n U + B, u +Chu =D, (n =2, 3, ..., N-1)
Pm+1,n+1 Pm+l,n Pm+l,n-1 (3.26)
where
7
An = anvpme’n
16
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7
- 2_
B, upm+9,n + an(K 1)vpm+e’n + 6Ax(uD)m+1,n
7
= -a K2
Cn apK vpm+9,n
7
D = ["Pm+e,n - (l-G)Ax(pD)m’n]upm’n " oo o.0 MPpn * &(ud)pi g, n

(2) Energy:

8 8 8 8
T +B T +C T =D n=2,3, s N-l
N Pm+l,n+l N Pm+l,n N "Pm+1,n-1 n ( ’ (3.27)
where 8
A, = a"vpm+e,n
8
BS = u + a.(K2-1)v + oax (2 pNu
N Pmeo.n (K51 Pm+0,n (3Pr et
8
C. = -a.K
n n" "Pm+e,n
8
D, = - (1-0) ax (=% pNu T - byv at
n {”pm+e,n (1-8) b b W ] Pm,n " Pmto,n P

4
+ AX(W TuNu )m+e’n

Therefore, when x > x..;, the difference equations are composed of Egs.
(3.12), (3.13), (3.15), (3.16), (3.18), (3.26) and (3.27) with the
assumption that the particle density is determined by Pp = Bp. The detailed
derivations of all the finite-difference equations above are given in
Appendices A and B.

It is noted that the boundary-layer equations (2.12)-(2.19) are a
coupled nonlinear partial-differential system. To avoid the coupling and
nonlinearity, in the process of discretizing every conservation equation,
only one corresponding variable appears as an unknown in the resulting
difference equation and the difference expressions for the products of the
unknown variables, functions or derivatives are chosen such that the unknown
variables appear linearly in the products. This procedure leads to a linear
system of algebraic equations which are not coupled. As pointed out by
Blottner [22] the coupling between the equations results in a tridiagonal
matrix which is somewhat more complicated to solve than in the uncoupled
case, In addition, for 1linear algebraic equations, there are several
effective methods of solution available. For example, the Thomas algorithm
is a very powerful and convenient technique to solve the linear equations
with the tridiagonal matrix of the coefficients.
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4. METHODS OF SOLUTION OF THE FINITE-DIFFERENCE EQUATIONS

The methods of solution depend upon the characters of the
finite-difference equations. For the six-point scheme, the resulting
difference equations constitute the system of simultaneous algebraic
equations with a tridiagonal matrix of the coefficients. Advantage can be
taken of this tridiagonal form of the coefficient matrix to solve the
algebraic equations by use of the Thomas algorithm [30]. With the Thomas
algorithm, the solution is obtained by

: Gl - gl Wi
w$+1 n = n n. m+l,n+l (4.1)
] F'l
n
where . i
. . . . . g} . . G
i - pd i _ qi i *n-1 i - pi i Yn-1
En - An’ Fn - Bn - Cn ] Gn = Dp Cn i
Fn-l Fn-1

The recurrence relation, Eq. (4.1), can be used to solve difference
equations (3.12) and (3.13), or (3.26) and (3.27). Correspondingly, W! = u,
=T, W’ = up and We = Tpe

By using the following procedure, the flow profiles can be determined:

(1) With the boundary conditions at the wall, calculate quantities E F;,
b’ from the wall towards the outer edge.

(2) With the boundary conditions at the outer edge, calculate the flow
properties w; from the outer edge towards the wall,

After the gas temperature T,.q1 .n is known, the gas density Pn+l,n Can be
calculated directly from the staté equation (3.15). Then, start1ng at the
wall and using the gas continuity equation (3.16), the normal velocity
Vm+1,n can be obtained.

When x < x.pij, the differential equations for the particle phase are
discretized using the four-point difference schemes. The methods for
solving the difference equations (3.17) to (3.20) are not difficult., After
starting either at the wall (only for the y-momentum equation) or at the
outer edge of the boundary layer, the calculations proceed consecutively
from one grid point to another in recursion, until the whole boundary layer
has been traversed:

i ¢l -
m+l,n =

A Wi

>

W

el (i =3, 5, 6) (4.2)
Bn

- .",

5%, 0%,




\.

m+l,n ~ . (i = 4) (4.3)

where W3 = u_, W4 = v_, W2 = T_ and W8 = p, . After the critical point
(x > Xcri)' tRe x-momengum and energy equations of the particle phase can be
discretized with the six-point scheme and then solved by the Thomas
algorithm, as for the gas phase,

Before solving the difference equations numerically using the methods
described above, some considerations are required:

(1) How to evaluate the coefficient matrix elements;

(2) How to give the boundary conditions in a form suitable for the numerical
computation;

(3) How to obtain the initial profiles;

(4) How to determine the value of «x the nondimensional coordinate for

the critical point,

cri?

First, the finite-difference equationg can be solved provided that the
values of all the coefficients Al, Bl, C} and Dy are known. However, from
the expressions of these coefficients, it is seen that they depend on
unknown values of the variables at the grid line (m + 1), since the
difference scheme is an implicit one. This difficulty can be surmounted by
using an iteration procedure. Of course, the iteration technique increases
the computation time very much. The other way to overcome the difficulty is
to use a linearization approximation: the quantities appearing in the
coefficients are evaluated at the previous grid line (m) if these quantities
are still unknown at the grid line (m + 1). Otherwise, they take on their
updated values. In this analysis, this linearization approach was employed,
since it is easier to program and requires less computer storage. Of
course, it is less accurate compared with the iteration approach. However,
satisfactory accuracy can be achieved by reducing the step size.

Second, in order to solve the system of simultaneous algebraic equations
at every new grid line (m + 1), it is necessary to have the boundary
conditions in a suitable form. In this analysis this is straightforward,
since there are no derivatives involved in the boundary conditions of the
Dirichlet type. In the finite-difference scheme, the boundary conditions at
the wall, Eq. (2.21), are written as

Unt1,1 =00 V1,1 =0 Tiern = Two
(4.4)

v
Pm+1,1
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? ! Similarly, the boundary conditions at the outer edge, Eq. (2.22), are given
? S in the form,
[y
X Upea N S L TN = 1

.- (4.5)
R N T T T Py P
: Y Here, concerning the outer-edge boundary conditions, another difficulty
P arises: How to select the number N, the maximum value for the number of
- grid points at the column (m+l), In other words, in the computation
f \ process, it is required to know how far to calculate the fiow variables
\z\‘ across the boundary layer. In order to guarantee that the value of N used
'&ﬁ: repr ts the f tream conditi i f la number for
R presents the freestream condition, one can specify a large number N,, fo
!Qg the grid points at the last grid iine (mmax) far downstream, where the

computation terminates. For all the previous grid lines (0 <m < m,.. ), the

oo same number N,. is used to define the outer edge of the boundary layer.,

;ﬁ This method is direct but inefficient, since it needs more computation time,
}:3 There is another approach in which a special value of N is chosen for a
e given grid line (m). In the latter method, N is determined as follows
RS, [31]: ;
Eé‘ (1) It is assumed that N;,; at the new grid line (m + 1) is equal to N, the

number of grid points at the previous 1ine (m).

(2) The finite-difference equations are solved with the assumed Ny,; and the
values of the flow quantities at the last two consecutive grid points,

Wn+1,N-1 and Wpeq N can be found.

l.'

A

‘{.Fvl

ﬁij (3) Tne difference between Wpy1 N-1 and Wy N TS compared with a certain
X small quantity e. If the condition of smooth conjugation

o [Wnr1 N = Wi o1l €€ (4.6)
o .
f2 is satisfied, the selection of Nm+1 is correct and the computation can
o proceed to the next step.
3
N

(4) If the condition (4.6) is not fulfilled, it is required to assume MNy,1 =
N, + 1 and then to obtain the new values of Win+1,N-1 and Wpyy N-  1f the
condition (4.6) is not fulfilled again, it is necessary to incCrease Nm+1
with unity, and so forth, until the smooth-conjugation condition is
satisfied. With this method, the number of grid points across the
boundary layer varies as the thickness of the boundary layer increases.

Next, in order to initiate the computation, the initial flow profiles
must be given, In most pure-gas boundary-layer studies, the initial ‘
profiles are obtained from similarity solutions, For dusty-gas )
boundary-layer flows, however, no analogous similarity solutions exist., In
previous work on finite-difference solutions for incompressible dusty-gas
boundary-layer equations, the initial profiles were specified in two ways:




.....

[ (1) The Blasius similarity profiles were chosen for the gas phase and
< uniform profiles for the particle phase [14].

(2) The initial profiles were obtained by using an integral method [13,
M 15].

‘; It is well known that all the integral methods for boundary-layer analysis
- do not attempt to satisfy the basic equations at every point; instead, they
guess or assume a suitable expression for the velocity and temperature
: profiles and satisfy the boundary-layer equations only on an average
X extended over the thickness of the boundary layer. In general, the initial
profiles obtained from integral methods are quite approximate., From the
studies of the behaviour of dusty-gas boundary-layer flows near the leading

: edge [17, 18, 27], it is also known that the similarity profiles for the gas
phase and the uniform profiles for the particle phase are the zeroth-order
] approximation in the 1large-slip region. The zeroth-order asymptotic

profiles are physically reasonable and were tested in this analysis. More
accurate initial profiles up to the first order can be obtained from the
asymptotic large-slip solution to the compressible laminar boundary-layer
equations for the gas-particle flow over a semi-infinite flat plate by using
a series-expansion method [27]. Thus, it is suggested here to employ the
first-order asymptotic solution as the initial profiles. However, in this
approach, it is required to obtain the asymptotic solution first and then to
solve the difference equations starting at a given initial position which
may be very near the leading edge but cannot be exactly at the leading edge,
since the asymptotic solution involves a singularity at the leading edge.
Wu [32] once proposed the following type of initial profiles at the
leading edge in pure-gas cases:

LNl “es =

i

(1) The tangential velocity u* and temperature T* have their freestream
values at all the grid points across the boundary layer except at the
wall,

(2) At the wall, the tangential velocity uy is zero and the temperature T&
corresponds to the wall temperature.

- A
Lt D el G 3

(3) The normal velocity v* is assumed zero at all the grid points.

Clearly, this method is very advantageous for starting numerical computation
without any preliminary calculations of initial profiles. Flugge-Lotz and
Blottner [23] studied the possibility of using the Wu-type initial profiles
in pure-gas boundary-layer cases and concluded that the Wu-type of initial
profiles can give reasonable results if the proper mesh sizes are chosen.
In the dusty-gas case, similar initial profiles can be set up by usSing
Wu-type profiles for the gas phase and uniform profiles for the particle
phase. Soo [24] applied such initial profiles to his analysis of
incompressible, laminar boundary-layer flow of a dilute particulate
suspension, The profiles are termed here as the extended Wu-type. In this
report, the ahove three different types, i.e., the first-order
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asymptotic-type, the zeroth-order asymptotic-type and the extended Wu-type,
were used respectively as the initial profiles in order to compare them.

As mentioned before, the asymptotic types of initial profiles can be
obtained from the large-slip solution [27]. However, because of the
different notations, certain relations must be established with the
asymptotic large-slip solution as follows:

x = (X)agy» y = (¥2x nyqy
U= (Wagys V= (72_1: (- Dagys  T=(Magys = (Plagy
X

o= (L), s o2x LTl By
Y ) Y
Pp ON “asy

T, = (T

D Pp = Blep)

p)asy’ asy
Similarly, a set of relations can be written for connecting the
finite-difference solution with the asymptotic small-slip solution. In this
analysis, nondimensional slip quantities for the particle phase are defined
as

ug = up - U, Vg = vy - v, Tg = Tp =T (4.8)
The corresponding relations are
1 —
x = (x)3qys y = (v2x n)aS
Y /17 y

(4.9)

g = lug) ,  vg=L_ () Ts = (Tg)

S S pr— p—y
asy Y1+B /2x asy y

These expressions are useful when comparing the finite-difference solution
with the asymptotic small-slip solution. In Eqs. (4.7) and (4.9), the
subscript 'asy' denotes the asymptotic solution.

Finally, as pointed out earlier, after the critical point (x » xcri)’ it
is assumed that the particle density is equal to the gas density times the
mass loading ratio of the particles. It is equivalent to assume that there
is no accumulation of particles on the surface of the plate and the flow is
then mainly diffusion-controlled for the particle phase as well as for the
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gas phase, In addition, after the critical point, quite simple
compatibility conditions (3.24) and (3.25) are valid. The value of Xcpj €an
be determined from the compatibility equation (3.21) and the condition
(3.23).  Equation (3.21) 1is an ordinary differential equation and the
solution ug (x) can be obtained numerically or analytically. For instance,

in the case of the Stokes relation (D = 1.0), Eq. (3.21) can be integrated
analytically as

up, (%) = 1 - myx (4.10)

where upw(o) = 1 is taken as the initial condition at x = 0. From the
condition “pw(xcri) = 0, Eq. (3.23), the critical value x..j can be
determined, say, for the Stokes case

=1
Xepi = — (4.11)
Hw
when T, = 0.5 and w = 0.5, X, = V2 or x% = ¥2 A5, If pf = 2.5 g/cm?,
d* = 10 um, T* = 300 K (or u* = 1,80x10- NS/m2) and u* = 500 m/S, the
typical values of relaxation parameters are obtained as: A% = 0.386m and

XEri = 0.546 M.

5. RELATIONS FOR SHEAR STRESS, HEAT TRANSFER, AND DISPLACEMENT THICKNESS

Once the gas flow profiles across the boundary layer are determined,
some boundary-layer characteristics of practical interest can be calculated.
The important quantities describing the behaviour of boundary-layer flows
are shear stress at the wall, heat-transfer rate at the wall and
displacement thickness. They are given in dimensional form as

(1) Shear stress at the wall:

= w*:(%“—) (5.1)

(2) Heat-transfer rate at the wall:

* o= aT*
qy = ‘ka(—&;)w (5.2)
(3) Displacement thickness:
= [ (1 - EU )y (5.3)
o Po UL
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The corresponding nondimensional characteristic quantities are defined as

> —
Ty = ¥ __ e, (5.4)
Pk u%?
. q'* .
Ay = ——— /Re, (5.5)
px u%3
5=%&Z (5.6)

Substituting the nondimensional transformations (2.11) into the expressions
(5.1)-(5.3), the nondimensional boundary-layer characteristics, Eqgs.
(5.4)-(5.6), can be written as

W WG, (5.7)
C W
W PrEc dy'w (5.8)
5= [ (1 - ou)dy (5.9)

(o]

For numerical computations, it 1is necessary to express the above
relations in finite-difference form. By means of polynomial fitting, the
gas velocity u and temperature T near the wall may be expressed with
sufficient accuracy as

=
"

a, +hy +tcy?+dy? (5.10)

u

—
]

= ar + bTy + cTy2 + dTy3 (5.11)

Taking the derivatives of the above variables with respect to y and setting

y = 0, the formulae for shear stress and heat-transfer rate at the wall are

obtained as

= Wb, , - . b
1W UWH qw PrECT

The values of b, and by can be determined by evaluating Eqs. (5.10) and
(5.11) at the four gygrid points nearest the wall and solving the resulting
equations, Then the shear stress and heat-transfer rate can be given by the
fallnwing expressions (see Appendix C):

........
------
.......




2 K(K + 1) 2 2
K<ay, K(K? + K + 1)
aw - . M (K2 + K+ 1) [(TZ - Tl) _ T3 B Tl + T4 - Tl ] (5.13)

where the subscripts 1, 2, 3, 4 denote the four grid points nearest the wall
and u; =y, = 0, Tl = Tw'

To calculate the nondimensional displacement thickness &, a three-point
difference formula of integration was used. The formula can be applied to a
nonequidistant step size [33]

N-1

By
& = n-1 13K + 2 ¢ K+ 1 1 F 5.14
22 5 et e K" KK+ 1) w1l (514)
where F = 1 - pu, and the subscripts n-1, n and n+l represent three

consecutive grid points at a given section.

6. COMPUTER PROGRAM

The computer program FDBLEP for solving boundary-layer equations of a
dusty gas over a semi-infinite flat plate was written in Fortran language on
a Perkin-Elmer computer system at UTIAS (see Appendix D).

Only the main features of the calculation procedure will be reviewed
here. A rectanguliar-grid system indicated in Fig. 2 was adopted, with the
m-lines in the y-direction (i.e., normal to the plate) and the n-lines in
the x-direction (i.e., paraliel to the plate). The y-axis is designated as
the initial line for the m-lines and the x-axis for the n-lines. In the
finite-difference procedure, the flow profiles along some m-line (say, the
initial line m = 0) are known and the flow parameters along the (m+l)-line
have to be determined.

Given below are the main steps in the computation procedure:

(1) Compute Un+l,n-

Using the known solution at the m-line (linearized conditions) and the
boundary conditions on the (m+l)-line, the new tangential velocity of
the gas at all the grid points of the (m+l) line, Up+l,n» are
calculated.

(2) Test for the outer edge of the boundary layer while computing u. After
the boundary layer has been traversed, the two consecutive values of u,
u and u , are compared to see if the difference between them
‘m+1,N-1 m+1,N o X
is Tess than some small positive number e. The value of ¢ is
determined by the desired accuracy of the computation.

25




(3) Compute T

\ m+l,n*
;% Using the new values of Up+1,n With the other linearized conditions,
;% the new gas temperatures Tm+1 n dcross the boundary layer are
@ calculated.
P (4) Compute p .
\¢ m+1l,n 3
2 Using the new values of Tp.y , the new gas density profile is !
?‘ calculated directly.
5 (5) Compute vp,) . |
n‘. !
™ Using the new values of ug.q n and ppyp ps the new normal velocity of
Q. the gas Viel,n 3CrOSS the boundary 1ayer are calculated.
.. 6 Compute u .
- (6) P Pt 1,
M Y
:3 Using the new tangential velocity profile upsy n for the gas phase and

’ the linearized velocity profiles up and vp for the particle
m

phase, the new tangential velocity prof11e of’ the particles is
e computed.

A4
s
:f 7) Compute v .
’j ( ) p pm+1,n
4
Using the new values of vpyy o and up ‘1.n with the linearized values
m
N of Vo , the new normal velocity proff]e for the particle phase is
o myn
N computed
n
N 8) Compute T .
(8) P P+l n
‘;% Using the new values of Up pm+ and Tm+1 n With the values of
;:- T.at the previous line ?msi the new temperature profile for the
::: particle phase is computed.
w 9) Compute
?. (9) p me+1,n
-
.¢ Using the new values of upm+1,n and Yp with the values of Ups Vps
n; Po at the previous line {(m), the new partlc\e density profile is

computed. However, when x > x..i, the new particle density profile
can be obtained by settin = .
.y e g pplﬂ+1,ﬂ Bpm-{’l,n

;j (10) Compute <.

Using the first four values of velocity for the gas phase nearest the
wall, i.e., Ynel, 10 Ymel,20 “m+l 3 and ug.y L4 the shear stress at the
wall is calculate&
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L)

.

N .

~ {11) Compute Qy »

N

L Using the values of gas temperature at the four grid points nearest the
‘ wall, i.e., ﬂn+1,l’ Tint1,29 Tme1,3 and Tpyq 4, the heat-transfer rate
N at the wall is calculated. ’

2\ (12) Compute &,

n

Using the density and tangential velocity profiles for the gas phase,
Pm+1,n 3nd Upyy p» the displacement thickness can be obtained by
~ integration,

To advance the computation from the (m+1)-line to the {(m+2)-line and so on,
the same procedure (1)-(12) is repeated until the desired value of x is
reached. The flow diagram for the basic computer program is shown in Fig.
3. It is noted that the order of solving the difference equations is
important. The equations for the gas phase are solved first where the
momentum and energy equations must be solved before the continuity equation.
Then the equations for the particle phase are solved and the energy and
continuity equations must be solved after the momentum equations.

Lonl nd'
1% %

al )
x 2 2 .

:E 7. NUMERICAL RESULTS AND DISCUSSIONS

The present finite-difference technique was used to solve the
compressible, laminar boundary-layer flows of a dusty gas over a
semi-infinite flat plate. The difference solutions for the three flow
regions were obtained: the quasi-frozen flow region near the leading edge,
“ the nonequilibrium flow region and the quasi-equilibrium flow region far
downstream. The asymptotic solutions in the two limiting regions (the
large-slip and small-slip regions, respectively) were also solved
numerically in order to independently verify the validity of the present

*; implicit finite-difference scheme when it is applied to a gas-particle
}j mixture.
5
In this analysis, the following set of parameters was chosen so that the
: finite-difference results could be compared with the asymptotic solutions by
" Singleton [17]:
X (1) The power index of the gas viscosity is equal to 0.5 (w = 0.5).
’ (2) The Prandtl number of the gas is equal to unity (Pr = 1.0).
L (3) The Eckert number of the gas is equal to unity (Ec = 1.0).
’ (4) The ratio of specific heats for the two phases is equal to unity (a =
. 1.0).
3
¥
’ )
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(5) Tne mass loading ratio of the particles is equal to unity (B = 1.0).

(6) Stokes' relation applies for the interaction between the two phases (D =
1.0 and Nu = 2.0).

(7) The nondimensional temperature at the wall is equal to 0.5 (Ty = 0.5).
The flow in the large-slip region was considered first, The initial
profiles at x, = 0.005 were obtained from the first-order asymptotic
solution. The computation proceeded from x, = 0.005 to x = 0,505 with mesh
parameters Ax = 0.001, 4y, = 0,01 and K = 1.05. The flow profiles for the
two phases at x = 0,055, 0.105 and 0.305 are plotted in Figs. 4 to 6. As
these results show, there is a very large slip between the particles and the
gas in this near-leading-edge region, Then the flow is gquasi-frozen. This
Situation can be explained as follows, In the freestream, the gas and
particles are in eguilibrium, that 1is, they have the same tangential
velocity and temperature while their normal velocity is equal to zero. At
the leading edge, due to viscous effects, the tangential gas velocity
decreases from its freestream value at the outer edge to zero at the wall
and the gas temperature also changes from its freestream value at the outer
edge to the wall temperature at the wall, whereas the normal gas velocity
acquires quite a large value. The particles, however, cannot accommodate
these rapid changes and tend to keep their original state of motion in the
freestream, [t takes some time for the particles to attain their
equilibrium with the gas. The relaxation process of the particles occurs
throughout the velocity-equilibrium length A%. This two-phase siip
phenomenon implies that the viscous relaxation length for the gas is much
shorter than the relaxation length for the particles owing to the drag and
heat-transfer interactions between the two phases. By comparing the
finite-difference solution with the asymptotic solution in the large-slip
Timit, it 1is seen that excellent agreement is obtained when x < 0,1,
Therefore, the asymptotic large-slip solution is valid when x < 0,1,

Next, the dusty-gas boundary-layer flow in the nonequilibrium region was
studied. The first-order asymptotic profiles at x, = 0.05 were taken as the
initial profiles. The grid parameters were Ax = 0.001, Ay; = 0.03 and K =
1.05. The flow profiles of the two phases at x = 0.55, 1.05, 2.05 and 5.05
are shown in Figs., 7 to 10, respectively. The numerical results indicate
that the slip between the particles and the gas diminishes gradually as x
increases. However, in this transition region, the particles still have
moderate slip against the gas and then the two-phase flow is characterized
by nonequilibrium, At the critical point (x = Xcri)’ the particles achieve
equilibrium with the gas at the wall, After that point, the two phases are
in a state of near-equilibrium. From the experience of this analysis, after
the critical point, the four-point scheme for the particle continuity
equation became unstable. [t was necessary to Seek an appropriate treatment
of the particle density. As mentioned before, based on the fact that the
gas-particle mixture acts like a perfect gas with the total density (1+g)p*
in the small-slip limit, it is assumed that the particle phase has the local
density oy = Be*, which wmeans that the mass loading ratio of the particles
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is constant across the boundary 1layer. Of course, this assumption
concerning the particle density for x > Xcrj May cause some inaccuracy in
the prediction of the flow properties in the nonequilibrium region since
this density distribution represents the zeroth-order approximation in the
small-slip limit. Fortunately, a near-equilibrium state between the two
phases is essentially reached after the critical point, as the difference
solutions show. The effect of the particle density on the flow properties
takes place only through the interaction terms. Under the near-equilibrium
condition, these interaction terms will become small of second order
compared with the viscous terms. Therefore, this approximate treatment of
the particle density is acceptable., It provides an approach to solve the
dusty-gas boundary-layer flow in the region x > x..;. More discussion about
the particle density is given in Appendix E. In Figs. 7 to 10, it is also
noted that the relaxation of the tangential velocities of the two phases is
terminated effectively at about x = 5,0 as well as the temperatures. In
contrast with tangential velocity, there is still an apparent difference
between the normal velocities of the two phases up to x ~ 20.0. It seems to
mean that the relaxation of v, and v occurs over a greater length than that
for u, and u. In fact, the main reason is that only one mechanism, i.e.,
the interaction between the phases, acts in the relaxation process for u
and u while two mechanisms, the interaction between the phases and the
continuity requirement, both play an important role in the process for Vp
and v,

For the finite-difference solution in the small-slip region, the
computation was started at x, = 5.05 and continued until x = 20.05. The
initial profiles were obtained from the finite-difference solution in the
nonequilibrium region. All the mesh parameters used in this calculation
were the same as those in the transition region. The numerical results for
x = 10,05, 15.05 and 20.05 are shown in Figs. 11 to 13. It is seen that the
quasi-equilibrium state between the particles and the gas has already been
reached. 1In Fig. 14, the particle slip quantities ug, v4 and Tg obtained
from the difference solution are compared with those from the asymptotic
small-slip solution. There 1is very good agreement between these two
solutions., The comparison between the finite-difference solution and the
asymptotic series-expansion solution in the small-slip region indicates that
the finite-difference scheme presented in this paper has proved to be a
useful method for studying dusty-gas boundary-layer flows and that the
asymptotic smali-slip solution is valid when x » 10,

It is found from Figs. 4 to 13 that the tangential velocity of the
particles in the boundary layer is always greater than that of the gas and
it decreases monotonically from its freestream value to the value at
equilibrium with the gas as one advances downstream from the leading edge.
Regarding the normal velocity, however, the situation is a little different.
Near the leading edge, the normal velocity of the particles is smaller than
that of the gas, i.e., v, < v, With increasing distance x, the normal
velocity of the particles becomes greater than that of the gas, which
happens first near the wall and then extends over the whole thickness of the
boundary layer. However, with increasing x, say x = 20, the normal
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! 3 velocities of the particles and the gas reach an equilibrium value as for

Q ' the tangential velocities. This difference can be explained as follows.

§%I The normal velocities for the two phases are equal to zero in the freestream

. and induced to some values in the boundary layer whereas the tangential
Ay velocities for the two phases are equal to the freestream value and decrease
noe in the boundary layer. In the boundary layer, the gas tangential velocity
SQf at the wall vanishes and its distribution across the boundary layer is
R similar to the profile for the pure-gas case. At the leading edge, the
rele particles tend to keep their motion in the freestream and consequently the
particle tangential velocity is greater than the gas velocity., Then, owing

V " to the slip between the two phases, a drag force arises and the particles
N decrease their tangential velocity while the gas increases its tangential

e velocity. Marching downstream, the difference between the tangential

N velocities for the two phases becomes smaller and smaller, With the
o particle slip velocity approaching zero, the drag exerted on the particles

T by the gas approaches zero as well. When the particle velocity becomes the
‘jz same as that of the gas, the interaction between the particles and the gas

2;3 disappears. Therefore, the particle tangential velocity may become nearly

5;5 the same as the gas tangential velocity but it cannot be smaller than that,

By contrast, after entering the boundary layer at the leading edge, the

A normal gas velocity is induced first to satisfy the continuity requirement
e and the normal velocity of the particles is then induced due to the drag

ﬁ& force exerted by the gas. 0f course, this induced velocity for the

o particles cannot be greater than that of the gas. However, in addition to
b the interaction between the two phases, the continuity requirement for the
] particle phase is another important factor which determines the changes in
v the normal velocity. Since the tangential particle velocity decreases in

gf{ the x-direction, a normal velocity must be induced to ensure mass
N conservation, Thus, the normal particle velocity may exceed the normal gas

\ 3 velocity. Especially in the region near the wall, where the particle slip
e velocity is quite large, the retardation of the particles is considerable
T and it results in a rapid increase of the normal particle velocity. In the
e region far downstream, where the thickness of the boundary layer varies very
f{& slowly, the effect of the interaction between the two phases becomes
M’- predominant and the normal velocities of the two phases tend to approach

each other 1ike the tangential velocities.

The numerical results shown above were obtained with the six-point
scheme for the x-momentum and energy equations for the particle phase after
the critical point. Instead, if the four-point scheme is ztill employed for
the particle x-momentum and energy equations after the critical point,
regardless of the compatibility conditions, the corresponding results are
shown in Figs. 15 to 17. It is found that some small oscillations appear in
the particle temperature profiles in the near-equilibrium flow region, for
example, at x = 4,05 and 6.05 (see Figs. 15 and 16). The reason is mainly
that the four-point scheme has a first-order truncation error in the
y-direction, 0(dy), while the six-point scheme is of second order, 0(ay?2).
In other words, the latter is more accurate and it can lead to a better
result, It is also interesting to note that these oscillations are bound
and damp out as x increases. In Fig. 17 (x = 10.05), it is seen that these

30

O 4t B RTINS e i, 1 S o



oscillations disappear. It means that in the small-slip region (x > 10),
both the six-point scheme and the four-point scheme can be used.

The finite-difference computations were made with the mass loading ratio
B = 0, using the same difference scheme for the dusty-gas boundary layer.
Obviously, the two-phase system of a gas-particle mixture reduces to a
single-phase system of a pure gas when B8 = 0, The results for the case of
B = 0 should be identical with the similarity solution for the pure-gas
boundary-layer equations. With B = 0, the numerical results for the
positions x = 1,05, 2.05, 5.05 and 8.05 are respectively shown in Figs. 18
to 21. They are compared with the similarity solution of a pure-gas
boundary-layer flow under similar conditions. Excellent agreement between
these two solutions is achieved along the whole plate. This comparison
provides further strong evidence that the present finite-difference scheme
is correct.

Once the flow profiles across the boundary layer are known, the
boundary-layer characteristics can be calculated. The three nondimensional
quantities T, dw and & as functions of the distance x from the leading edge
are shown in Fig., 22 to 24. It is found that the curves for the shear
stress T, and the heat-transfer rate dw are nearly identical except in the
nonequilibrium region. This is attributed to the Reynolds analogy between
the heat-transfer and the shear stress [34]. It is well known that for the
boundary-layer flow of a pure gas on a flat plate, the profiles for the
velocity and the temperature become completely analogous if the Prandtl
number has the value of unity. For the dusty-gas boundary-layer flows over
a flat plate, there is no similar relation available. As pointed out
before, however, the gas-particle system behaves like a gaseous mixture in
the two limiting regions: (1) In the large-slip limit near the leading
edge, the two-phase system responds as if there were no particles. For this
analysis, the Prandtl number of the gas is just assumed to be equal to unity
so that the Reynolds analogy holds in the large-slip region, or more
exactly, with zeroth-order accuracy. (2) In the small-slip limit far
downstream, the two-phase system acts like a pure gas with modified

thermodynamic properties. The modified Prandtl number Pr is given by [26]

In the case under consideration in this paper, « = 1.0 and B = 1.0. This

yields Pr = Pr = 1.0, Consequently, the Reynolds analogy also holds in the
small-slip region with zeroth-order accuracy. In Figs., 22 to 24, it is
interesting to note that along every curve for the characteristic
quantities, there is an inflection point which corresponds to the critical
point, This fact means that for the boundary-layer flows of a gas-particle
mixture, some significant changes in the flow properties occur at the
critical point. In fact, as mentioned before, at the critical point, the
two-phase system accomplishes essentially the transition from the
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nonequilibrium flow to equilibrium flow, In Figs. 22 to 24, the
corresponding results for the pure gas without particles are shown for
comparison. It is seen that the shear stress and heat-transfer rate at the
wall increase and the displacement thickness decreases owing to the presence
of particles. Owing to the interaction between the particles and the gas in
the two-phase boundary layer, the tangential velocity and temperature of the
gas phase increase except at the wall and at the outer edge, where the same
boundary conditions hold as in the pure-gas case. Compared with the
pure-gas boundary layer, the velocity and temperature profiles for the
A dusty-gas boundary layer have a steeper gradient at the wall and a more even
¢ gradient near the outer edge. It is clear that, as a result of these
) changes in the flow profiles, the shear stress and heat transfer increase
: while the displacement thickness decreases. The same conclusion was
: obtained from the asymptotic analysis [27].

Finite-difference calculations were also done with other types of
initial profiles: the zeroth-order asymptotic profiles and the extended
) Wu-type profiles. In the previous computations of this analysis, only the
first-order asymptotic profiles were applied. The numerical results for
these three different types of initial profiles are compared in Figs. 25 to
30. The difference solution for the extended Wu-type initial profiles
started at the leading edge (x, = 0.0) and the solutions for the two
asymptotic profiles at x, = 0.05. Figures 25 to 27 give the flow profiles
of the two phases at x = 0.15, 1.05 and 5.05, and Figs. 28 to 30 give the
nondimensicnal boundary-layer characteristics. The results for the extended
Wu-type profiles indicate that employing them as the initia) conditions can
result in physically reasonable solutions which agree very well with the
solution for the first-order asymptotic profiles. The results for the
zeroth-order asymptotic profiles show that using the zeroth-order asymptotic
profiles as the initial conditions may cause some deviations in the flow
properties in the quasi-frozen and nonequilibrium regions but not in the
quasi-equilibrium region, especially for the normal velocity of the
particles. The reason is that the zeroth-order asymptotic profiles assume a
zero velocity for the normal particle velocity at some distance from the
leading edge (say, xg = 0.05) and it leads to some errors. With
increasing x along the flat-plate, these deviations are damped out and all
the three initial profiles yield identical results. It should be pointed
out that the possibility of using the extended Wu-type initial profiles
) leads to a significant simplification in the computation procedure, since it
; is not necessary to solve the asymptotic solution in the large-slip limit.

| 8. CONCLUDING REMARKS

X The complete set of nonlinear partial-differential equations for
K compressible, laminar, boundary-layer flows of a dusty gas over a
semi-infinite flat plate was solved using implicit finite-difference
schemes. The numerical solutions for the three distinct flow regimes, the
’ quasi-frozen, nonequilibrium and quasi-equilibrium regimes, were obtained
, for the case of the Stokes relation. The finite-difference results for the
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two limiting cases of large slip and small slip are in good agreement with
the corresponding asymptotic solutions. The numerical examples indicate
that the present finite-difference method provides a useful technique for
studying two-phase boundary-layer flows.

From this analysis, it is shown that in order to get a finite-difference
solution along the entire flat-plate 1length with the present basic
equations, it is important to deal realistically with the particle density
after the critical point. The assumption that the gas-particle system is
treated as a binary gas with the given mass ratio of the components (B)
after the critical point represents a practical approach for the case where
diffusion is the main controlling process in the region x > x..j. It yields
physically reasonable results.

For the x-momentum and energy equations of the particles, both
four-point and six-point schemes can be used. The numerical computations
indicate that the six-point scheme leads to better results especially in
the nonequilibrium-flow region, since it has an accuracy of second order.
When using the six-point scheme it is necessary to obtain the compatibility
conditions as additional boundary conditions. Fortunately, the
compatibility conditions for the tangential velocity and temperature of the
particles are very simple after the critical point.

A comparative study of the three different initial profiles (the
first-order asymptotic, zeroth-order asymptotic and extended Wu-type)
indicates that all three types of initial profiles can be used for the
finite-difference solution but the zeroth-order asymptotic profiles might
cause some errors in the near leading-edge and transition regions. It is
suggested that the extended Wu-type initial profiles can be used, since they
lead to a significant simplification in the numerical procedure.

The numerical results presented in this report indicate that the effects
of the particles on the boundary-layer flows are considerable and that the
modification in the flow properties owing to the presence of particles
includes an alteration of the flow profiles, an increase in the shear stress
and heat transfer at the wall and a decrease in the displacement thickness.
These are the major features found in compressible, laminar boundary-layer
flows of a gas-particle mixture.
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v FIG. 12 FLOW PROFILES IN SMALL-SLIP REGION (x = 15.05),
- (a) TANGENTIAL VELOCITY; (b) NORMAL VELOCITY; (c) TEMPERATURE,
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(a) TANGENTIAL VELOCITY; (b) NORMAL VELOCITY; (c) TEMPERATURE.
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3 FI1G. 13 FLOW PROFILES IN SMALL-SLIP REGION (x = 20.05).
L)
. (a) TANGENTIAL VELOCITY: (b) NORMAL VELOCITY; (c) TEMPERATURE.
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(a) TANGENTIAL SLIP VELOCITY; (b) NORMAL SLIP VELOCITY; (c) TEMPERATURE
DEFECT,

O FINITE-DIFFERENCE SOLUTION; --- ASYMPTOTIC SOLUTION, 1: x = 10.05;
2: x =15.05; 3: x = 20,05,
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COMPARISON BETWEEN FLOW PROFILES RESULTING FROM FOUR-POINT AND SIX-POINT
SCHEMES IN SMALL-SLIP REGION (x = 10.05).

(a) TANGENTIAL VELOCITY; (b) NORMAL VELOCITY; (c) TEMPERATURE,

FOUR-POINT SCHEME: O GAS; O PARTICLE;
SIX-POINT SCHEME: --- GAS;e==PARTICLE,
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FIG, 18 COMPARISON BETWEEN FLOW PROFILES RESULTING FROM FINITE-DIFFERENCE
SOLUTION WITH B8 = O AND SIMILARITY SOLUTION AT x = 1,05,

(a) TANGENTIAL VELOCITY; (b) NORMAL VELOCITY; (c) TEMPERATURE.

O FINITE-DIFFERENCE SOLUTION WITHOUT PARTICLES; we= PURE-GAS SIMILARITY
SOLUTION,
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95 FIG, 20 COMPARISON BETWEEN FLOW PROFILES RESULTING FROM FINITE-DIFFERENCE
! SOLUTION WITH B = O AND SIMILARITY SOLUTION AT x = 5,05.

iy (a) TANGENTIAL VELOCITY; (b) NORMAL VELOCITY; (c) TEMPERATURE.

* O FINITE-DIFFERENCE SOLUTION WITHOUT PARTICLES; e=== PURE-GAS SIMILARITY
. SOLUTION.
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F1G. 22 SHEAR STRESS AT THE WALL AS A FUNCTION OF DISTANCE x: --—— WITH
PARTICLES; ---- WITHOUT PARTICLES.
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FIG, 24 MONDIMENS[ONAL DISPLACEMENT THICKNESS AS A FUNCTION OF DISTANCE <
~- .-~ WITH PARTICLES; =-=--- WITHOUT PARTICLES.
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“‘? ) JERDTH-0RDER ASYMPTOTIC PROFILES: O GAS; © PARTICLES:

EXTENDE) WU-TYPE PROFILES: A GAS; A PARTICLES;
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F1G. 26 FLOW PROFILES WITH THREE DIFFERENT TYPES OF INITIAL PROFILES IN
NONEQUILIBRIUM FLOW REGION (x = 1.05).

(a) TANGENTIAL VELOCITY; (b) NORMAL VELOCITY; (c) TEMPERATURE,

ZEROTH-ORDER ASYMPTOTIC PROFILES: O GAS; O PARTICLES;
EXTENDED WU-TYPE PROFILES: A GAS; A PARTICLES;
FIRST-ORNDER ASYMPTOTIC PROFILES: ---GAS; =e= PARTICLES,
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FIG. 27 FLOW PROFILES WITH THREE DIFFERENT TYPES OF INITIAL PROFILES IN
NEAR-EQUILIBRIUM FLOW REGION (x = 5.05).
(a) TANGENTIAL VELOCITY; (b) NORMAL VELOCITY; (c) TEMPERATURE.
ZEROTH-ORDER ASYMPTOTIC PROFILES: O GAS; O PARTICLES;
EXTENDED WU-TYPE PROFILES: A GAS; A PARTICLES;
FIRST-ORDER ASYMPTQTIC PROFILES: -~~~ GAS; ~==PARTICLES.
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FIG. 30 NONDIMENSIONAL DISPLACEMENT THICKNESS WITH THREE DIFFERENT TYPES OF
INITIAL PROFILES,

O ZEROTH-ORDER ASYMPTOTIC PROFILES; A EXTENDED WU-TYPE PROFILES;
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APPENDIX A

DERIVATION OF THE FINITE-DIFFERENCE EQUATIONS WITH A SIX-POINT SCHEME

The momentum equation of the gas phase is

Wy oy M- 2% dud W, - A-1
My Py Ty Pp(up - u)D (A-1)
or du M %
pu Fx- + (PV - d Ty) -&' . gy—i = ppuleD - PpUUD (A-Z)
where 2 21 |
p'o= .g_E T, = ET_ = Tn+1 + (K -I)Tn - K n-1
a1’ Yy (1K) &y, 3

Substituting the expressions for difference quotients (3.1)-(3.4), Eq.
(A-2) becomes

1 ' )
(P)meo,n 5 (Ums1,n = Ym,n) + (v - p'Ty)m+(9,n{'(1—\()—&;‘; [um+1,n41

1-0

2
+ (K 'l)um+1,n - Kz"m+1,n-1] + ———(1+K)Ay Aum,n
n

26K
- HM’"{H:K_)_A_—Z [ume1,ne1 - (K¥Dugey o # Kupmeq,n-1]
Yn

+ 2$1-9)K A2um’n}

(1+K) ay,, 2

= (ppupw)m+e,n - [e(pppD)m-!-l,n um"’l,n + (1-9)(%pn)m;n um:n]

(A-3)

{.;7,‘

:..;: Multiplying by Ax and rearranging Eq. (A-3), the finite-difference form of
g the momentum equation can be obtained:
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1 1 1 1
An Untl,n+1 * Bn Umed,n * Cp Ume1,n-1 = D (A-4)

where the coefficients have the following expressions:

Ay = ap(pv - p'Ty)mH),n - Cp Hp+o,n

n = -anKZ( pv - u'Ty)me’n - CnK[l‘n+e’n (A-S)
l '
Dy = [()ea,n = (1-O) (D) nlup n = balev = b'Ty)peo n i g

+ dpbmie,n A2um,n + Ax(pp”p“D)m+6,n

The energy equation of the gas phase is

a7 aT . u 8T . 1 dp (ol 2 2
u 2+ v 2= 2+ TR () + Ec pu(=) + Ec U, - U
P ox e y Pr dy Pr d ( y) "(oy) ﬁ)[( P )
1 2 1
+ — -V + T, - T)upNu A-6
2= (vp = V2D + o gy (Tp - Dl (A-6)
or . T 7 2
ou J0 4 (v - o7 )80 LB 2Tl pe ()T 4 e pp[(up - u)?
1 2 1 1
+ 2 (v, - v + = p T pNu - 2 p Tulu A-7
Reo( p - V)21 o= FpTphiu = = ppTul (A-7)
Using a similar procedure, Eq. (A-7) is discretized as
(pu) Lo ST )+ (v - BT - (T
m+e,n 7 * ml,n T ‘m,n Pr ¥ mro,n (1+K) Ay, m+l,n+l
Continued
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1-6

2
* (KEDTern = Kot n-1 ]+ iy 4yl
n

- () 2&K

D — [Tm+1 n+l ~ (K+1)Tm+1 nt KTm+1 n-l]
Pr 'm+8,n (1+K)A.Yn2 s ’ ’

+ _2(1-8)K Aszn}

(1+K) Ay, 2

= 2 - y)2 1 - y)2 1
{Ec wuy2+ Ec py{(uy - u) +E (vp = v) 2w * 5 B Tp N Jne 0,0

- (96 g e 0Tt o + (1-0) (o ppibu )y Ty o ] (A-8)

The difference equation for the energy conservation of the gas is

2

2 2 2
Ao Tmel,n+1 * By Tmet,n * Cn Tmwi,n-1 = D (A-9)
where 2 ,
Aq = ap(ev - 'F"J_r Ty )m+9,n - Cn(ﬁp;)nwe,n
2 '
By = (P)pio,n * ap(K21) (pv - %‘;‘ Ty )m+9,n + Cn(K"l)(—gF)m-re,n
1

+ OAX |— u A-10
(3Pr ppuN )m+1,n ( )

2 [}
C, = -anKz(PV - -;—r Ty)m+e,n - CnK(%)m*‘e-"

2 '
Op = [(pu)m,re,n - (1-9) & (‘3};— pPpNu )m,n]Tm n " by (pv - T‘;‘; Ty)m+(-),nATm,n

r

@

* dn(g—r)me,n A2Tm,n + ax{Ec “uyz ¥ Ecpp[up -u)?e %’ (vp - V)2l
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The x-momentum equation of the particle phase is

du du
up BYE * vy SyB = -(up - u)yd = ud - upuD (A-11)
Discretizing Eq. (A-11) yields
1 - N 8
upm+e,n'Z§ (upm+1,n upm,n) vpm+6,n{Z1+K$Ayn [upm+1,n+1

1-6

+ (K2-1 - K2 =2 N
( )upm+l,n “Pme1,n-1 (1+K) &y, Pm,n

= (uuo)m+e,n = [e(w)m+1’nupm+l’n + (1'9)(w)m’nupm’n] (A-lZ)
Therefore
7 7 7 7
A + B, u +C.u =D A-13
n upm+1,n+1 N “Pm+l,n n “Pm+l,n-1 n ( )
where
A7 =

a. v
n n pm+e’n

7

B. = + K2-1 + 0Ax A-14
n upm+e’n an( )me+e’n (F'D)m+l’n ( )
7
= =g K2
Cn an vpm+9,n

O = [qu+9,n ) (1-9)Ax(uD)m’n]upm,n ) bnvPm+e,n AuPm,n * Ax(u“D)m+9,n

The energy equation of the particle phase is
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oT AT
u, —2 +v P . % - T)pNu = % TuNu - % T N A-15
P ax P ay 3Pr (Tp e 3Pr N 3Pr pHN ( )
Then
1 ) 2
u i T - T + T + K '1 T
Pm+o,n Ax ( Pm+1,n pm,n) me+9,n{(1+K)Ayn [ Pm+1,n+l ( ) Pm+l,n
- K27 +_1-8 a1
pm+1,n-1] (1+K) ay,, pm,n}
- a - a
* Gpr T, = [O05e Wy, n Topyy )+ (19 (g i dn Ty
(A-16)
Consequently,
Al T +B°T v CoT -p’ (A-17)
N Pntl,n+l " Pm+l,n N Pm+1,n-1 n
where Aa i
" N Pmie,n
By = + ap(K? 1) ),
n Pm+6,n n Pm+ 6 +1,n
= -ak (A-18)
n " Pm+e,n
8
= - (1-8)Ax 3o -h AT
Dy = | Pm+6,n ( ( uNux“ I pm n nvpm+6,n Pm,n

+ (ST
(3Pr W )m+9,n

The continuity equation of the particle phase can be
different forms as follows:

d
_ + =
ox pp v p dy pp Vp 0

A.5

«ritten in the
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(A-19)
=0
1l ol . 0 1
upm+9,n 2&'[(__Jm+1,n };-ln,n] me+6,n{(1+K)Ay [(p ln+1,n+1
% p n
+ (K2-1) (1) - k2 ]+ 18 all) )
Pp m+l,n Pp m+l,n-1 (1+K)Ayn Pp M,N
1 1 1 6
- | 0l— -0) (=— L LA |\
[ (pp )m+1,n + (1 )(pp)m’n]{AX (upm+1’n pm’n) (1+K)Ayn me+1’n
1-6 -
+ - =0 (A-20
(1+K) ay,, pm,n} )

Then the difference equation becomes

91 91 91 .
. + 2 + C (& =D A-21
An(p )m+1,n+1 Bn(p 1n+1,n N ‘m+l,n-1 n ( )
! p P p
¥
2t The coefficients in Eq. (A-21) are:
9
. A =
. n an"pm,re’n
!
0
N 9
B = +a (K2-1 -9 - u - a v
n upm+6,n 3! )me+e,n (upm+1,n pm,n) N""Pm+@,n
: )= -a Ky (A-22)
n 0 Pnte,n

R |



By where
(A-23)
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S APPENDIX B

X DERIVATION OF THE FINITE-DIFFERENCE EQUATIONS

WITH A FOUR-POINT SCHEME

G The continuity equation of the gas phase is

I‘: __3__ pu + ..6_. ov = 0 (B"l)

Using the expressions for the finite-difference quotients (3.5)-(3.7), Eq.
(B-1) becomes

::: 'é']zx— [(pu)m+1’n = (pu)m,n + (m)m-fl’n-l - (m)m’n-l]

1=9 [(ov)mn = (PW)p,p-1]=0

i + = [(e)ns1,n - (PIm1,n1) * <
¥Yn-1 (8-2)

8y
Therefore
0 (VIn+1,n = (P)me1,n-1 - 1%9 evda,n = (o) pan ]

_ Ypa

o o [(p)mer,n = (P + (A)pey pe1 = (AU oy ] (B-3)

by The x-momentum equation of the particle phase is

‘s m m
3 up 3;9 * vp Fyﬁ = -(up ~ u)ud (B-4)

With the quotient expressions (3.8)-(3.10), Eq. (B-4) becomes

i u 1 (u -u Y + v {-—9.- (u -u
0 Pm¢o,n &x  Pml,n  Pm,n Pmto,n "ty,  Pm+l,ntl  Pmel,n
Continued
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= -[e(“D)nH-l,n upm+1’n + (l-e)(w)m’n upm,n] + (UND)m+e,n (B-S)

R Therefore, the difference equation can be written as

:‘&"“ 3 3 3
k) - i
“::? An Upme1 n+l + By, P+l n Ch (B-6)

s where 3
A3 - e

v
- n Yn P+ 8,0

R B’ = - Sx + OAX B-7
T:‘,:@. Bn = Upneon o Yoms 6.0 (MD)m+1,n (B-7)

:'.3} c3 - [{1-8) & , (1-9) &

v u + U
Ny n &Y pm+9,n] Pm,n+1 [ Pm+0,n Ny, Pm+ 0,n
- (l'e)Ax(pD)m’n]upm,n + AX(UPD)m+e’n
The y-momentum equation of the particle phase is

I ov ov _
Y : up _&R + vp _5;9 = -(vp - V)pD (B"B)

Substituting expressions (3.8), (3.9) and (3.11) into Eq. (B-8),

. 1 0
‘ u (v - v + v _9 (v -V
2] Pm+e,n Ax ( Pm+1,n prn,n) pm+6,n{Ayn_1 ( Pmtl1,n  Pmtl,n-1

A v 1=0 (y -V }
Kt Nn-1 ( Pm,n pm,n-l)j

t = -[e(uD)m+1,n me+1 n + (l'e)(“D)m,n vpm,n] + (V’JD)WH'Q,H (B-g)

B.2
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A AT T LA SR 1 A Ny AN 2 o T AT R AN ALK sl Ao AT
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Then, the finite-difference form for the y-momentum equation becomes

4 Y Y

Al v +B. v =C -
N "Pm+l,n N "Pm+l,n-1 n (8-10)
N 94
A Yo ¢ Vo Pmron " 8 (WD) 41,
N 8AX
B, = - X B-11
n Mol mee’n ( )
b - (1-8) & - (1-0) Ax
¢ = [pprenn L—L_Ayn_l Yomeon = (1O &0n
1-0) Ax
v [LA—Y;\_.% va+e,n ]vpm,n-l + &(viD)psg,n
The energy equation of the particle phase is
u.a_T.E+v i£=-_!_.(T - T)pNu (B-12)
P ax Py 3pr P

Using a procedure similar to the x-momentum equation, the finite-difference
equation for particle energy conservation can be derived as follows:

L (7 -1, )

0
u —_— T
Pm+6,n Ax ( Pm+1,n Pm,n { (

v 8 - T
Pm+8,n Ay,  Pm+l,n+l pm+1,n)

1-90
+ = (T - T
by, Pm,n+l Pm,n

)}

gl Mo Ty oD i Ty T (2 T

(B-13)

Pm+l,n m,n

5
AT + T =C -14
N Pm+l,n+l B Pm+1,n n (8-14)

B.3
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S
A = O vp
Ay, Fm+é,n

<x>
E

= - + BAX _ﬁ_ B-15
g ®n upm+6,n by, I:’m+e n (3Pr’ uhu )’“+1'“ ( )

3y
w

o n [ Ay, pm+0,n] Pm,n+1 pm+9 n by,  Pm+8,n

g - (1-0) A (=2~ uNu T + M| o T u
: (-0 (G )y o T 40 v,
The continuity equation of the particle phase is

0 ) = -
" = Ppup * v Po¥p 0 (B-16)

or
xit bp
Ny up 3;9. Sy—E + pp( + _;E) (B-17)

W Usirg the quotient expressions (3.8)-(3.10), Eq. (B-17) becomes

& 1
u -
vl Pm+o,n Ax (

2 (o

Pmto,n ay, = Pm+l,n+l ) ppm+1,n

)+ v )

ppm+1,n ) ppm,n

. + (1'9) -
) By, (ppm,n+1 ppm,n

N+ [oop ) ot (-90ep s )

pm+1 n upm,n

0 1-6 -
+ 2 (v - v + 229 (v -V = 0 B-18
Ay, ( Pm+1,n+l pm+1,n) &y, (pm,n+1 pm,n)] ( )

A Then, the finite-difference equation can be written in the following form:

6 6 6
T A + = B-19
T N el el B, Pt 1, C, (8-19)

: ‘ Sy A AP O A NAT A P T o T e o TR O Y o g R e
MOASAH VY 'i.i Qr A i’nl‘: Al 8 X AW . o N S L na0s a2 b 3 ‘ {' AN Y 'h"s‘h.h "&‘ .e



bt where 6

= OAX

B AL =22y

i N by, Pmre,n

2
+ 8 (y
o m+l,n m,n Ay,

)

-2
Pm+1,n+1 vpm+1,n

EE: + B(1-0) A ¢, -2vy, ) (B-20)

-9
+ [(29—1)upm+1 ot 2(1-8)u,

Py b}

e 6 _ _r{1-6)a
i cn = - vy,

8,n ]ppm,n+1

e - 8(1-8) & ¢y

- 2v
1’«.: A-Vn pm+1 ,n+1 pm+1 oN
\J

)-(_I:Aver%fﬁ(vp -2, e |

m,n+1 pm,n ’

o B.5 '
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APPENDIX C

DERIVATION OF THE RELATIONS FOR SHEAR STRESS, HEAT TRANSFER

AND DISPLACEMENT THICKNESS

Characteristic quantities of boundary-layer flows are defined as

= u* -
w oW G, (c-1)

gk = _yx (OT* -
ke k\,*q('a—y';)w (C-2)

= : - *u* * -
o= S By (c-3)

Correspondingly, the nondimensional parameters take the following form:

+*

Tw i d k2 /Re,, (C-4)
Po Ux
&  —
§y = — S Reo (C-5)
Py US,
5 = .f_; Re (C-6)
where
Re o PEUS N

Tl

From the definition of the nondimensional parameters, Eq. (2.11), the
derivatives of the gas velocity u* and temperature T* can be given as

c.1

1
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My
A
wy
l‘t’t U* —
W - = Re, () (c-7)
b y* A %
_ T* —
R M* = = Re. (A -
..- & ay* )\‘; -] (ay) (C 8)
%
* and the integration (C-3) becomes
s
‘ © _— N;, ®
:1 [ -8 ayr = 2 [ (1 - pu)dy (C-9)
L’:". o pm um {Rew 0
!'Ti‘ .
.;E‘ Therefore, the nondimensional characteristics of the boundary-layer flows
f can be expressed as,
::n,
i,
X = u, (& c-10
: W "W(ay )w ( )
A5
s G, = - ¥ __ () (C-11)
W PrEc 2y 'w
'r ®
2 6=/ (1 - pu)dy (C-12)
"y °
- where
1.‘
t_a"g]
1" * ckx uk U;Z
3 uw=_pﬂ, pr = b ¥ and Ec = ——
- be k* ¢y Ta
l| p
L}
.: In order to calculate the derivatives at the wall with the
".;: finite-difference solutions, the gas velocity u near the wall can be
. approximated by a cubic polynomial:
:: u=a, +by +cy?+dy? (C-13) _
4
\
,;:..‘ At the four grid points nearest the wall, the values of gas velocity are
! known and are equal to Uy, Up, U3 and ug, respectively. Then, there are
o four equations which can be used to obtain the coefficients s bu, ¢, and
e b
?'..
]
.’:':
: C.2
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yl = 0: Ul = au (C‘14)

v, * Aylz up = ay *+ bydy; +c ;2 + d a3 (C-15)
¥3 = (K+1)ayg: uz = a, + by (K+l)dyy + ¢, (K+1) 28y 2

+ d, (K1) 3ay, 3 (C-16)
¥g = (KHK+1)yp: ug = ay + b (KZ2K+1) ay; + ¢, (K2K+1) 28y, 2

+ d (K2+K+1) 34y, 3 (C-17)

Solving the system of simultaneous equations (C-14) - (C-17) by an
elimination method, the value of coefficient b, is obtained:

b, = K 2+K+1 [(up - uy) - 3t U, YTl g (C-18)
K28y, K(K$D) g (k 24k41) 2

For the gas temperature T, there is a similar relation for coefficient
br:

2 Tq - T Ty - T
bT = K<+K+1 [(TZ _ Tl) - K3 - 1, 4 1 ] (C-19)
K28y, (K+1) (K 24k+1) 2

Since the gas velocity at the wall vanishes, u} = 0 in the expression
(C-18), therefore, the nondimensional shear stress at the wall can be
determined:

< (KB pyo L Y3, ] (C-20)
M K28y 2R K (k2akon) 2

and the corresponding heat transfer is

L) - - Ot STy AN i e
! RTRAT 4
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Ty - T Ta -
& - Mw  (KZK+1) (T, - T;) - 3 1, 4 ! ] (C-21)
W 2 1
Pr Ec KzA-Yl K(K+1) K(K2+K+1) 2

As for the three-point difference formula, the integration 1 is
calculated by

IN

I =) F(ydy (C-22)
o]

Within every small integration region, the integrated function F(y) can be
approximated by a quadratic parabola p(y) through three consecutive grid
points (m+l, n-1), (m+l, n) and (m+l, n+l):

Y = ¥n

Y = Yny2
n) +Bn( 5
n

ply) = A, 5 )+ ¢C (C-23)
n

n

The quadratic polynomial p(y) satisfies the conditions:

Pyn-1) = Frea,n-10 PUR) = Fruans PURa1) = Py pa (C-24)

Then a system of simultaneous algebraic equations for the coefficients Ay,

Bn and Cn can be constructed:

An - KBy + K2Cp = K2Fm+1,n-1' Ch = Foel,no An *+ By + Cp = Fret nel

(C-25)
Consequently, the solutions of the above equations can be found as

= K K2
Ap = rYSt Foel,n4l = KFmey o # a1 Fn+1,n-1

= 1 K2
By = X1 Fm+1,n+1 + (K‘I)Fm+1,n Ty Fm+1,n-1 (C-26)

Ch = Foel,n
C.4
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.....

b Substituting the coefficient expression (C-26) into Eq. (C-23), replacing
Ry the integrated function F(y) by p(y), and integrating Eq. (C-22) in every
% small interval A&y,_; and making the summation, the three-point difference
i formula for nonequal intervals is derived:

W N-1 Ay, &Y.
fg;a I = E [ nlAn" EIBn+Ayn-1Cn]

2 32 2

) N-1
dosy! = 7 &p-1 [3K+2 F

oy I =5 e Fnel,ne1 * (C-27)

1 1
Fm+1,n - K(K+1 Fm+1,n+1]

‘:': ' c.5
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APPENDIX D

COMPUTER PROGRAM FDBLEP

The

program

FOBLEP

for

solving finite-difference

boundary-layer

equations over a flat plate for a dusty gas is written on the Perkin-Elmer

3250 system at UTIAS.
explained below.

The main notations used in the program are listed and

k]
e A e g e R .

.
ORI

TP(I)
ROP(I)
SHEAR
HEAT
THICK
UW
W

EC

PR

WN
BETA
DX

Dy

...............
LS
.
\

u at grid point (m+l, n)
v at grid point (m+l, n)
T at grid point (m+l, n)
p at grid point (m+1l, n)
at grid point (m+1, n)
at grid point (m+l, n)
T, at grid point (m+l, n)
at grid point (m+l, n)
Ty at grid line (m+l)

d,, at grid Tine (m+l)

& at grid Tine (m+l)

u

w

Tw

Ec

Pr

..........
-

------
DY



o KE = K
0 CITA. = 8

EPS = €
y N = maximum value of n
-ﬁ XSTA = initial value of x
XMAX =  maximum value of x

XCRI = critical value of x
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THIS PROGRAM SOLVES THE GAS AND PARTICLE PARAMETERS FOR
THE BOUNDARY LAYER EQUATIONS OF A DUSTY GAS OVER A SEMI-
INFINITE FLAT PLATE BY MEANS DF FINITE DIFFERENCE METHOD
AND GIVFES CHARACTERISTIC GUANTITIES OF BOUNDARY LAYER FLOW
(IMPLICIT SCHEMES FOR TWO PHASES., NONITERATION PROCEDURE)

- - e e e e e o o e e = e

- - - - -

- -

- e e e we e e ww e e e e e e e e e e e - e e o e

- e e wm e, - - - e e e e ew e e W e e e e e

-_— e e e e e e e E D e e @ o

IMPLICIT REAL#8B(A-H,0-2)

REAL#8 KE. KE1., KE2, KES3, KE4, MUX., MDR, MNU, MM
DIMENSION A(100),B(i00),C¢(100),D(100)

DIMENSION U(100),V(100),T(100),R0O(100)
DIMENSION UP(100), VP(100), TP(100), ROP(100)
DIMENSION RUE(100),RVB(100)

DIMENSION RU(100), CR(100), CRB(100)

DIMENSION DMD(100), DMN(100),DMDB(100), DMNB (100)
DIMENSION UD(100), VD(100), TD(100)

COMMON /G/ PR, WN, EC

COMMON /H1/ KE., KE1l, KEZ2, KE3
COMMON /H2/ CA,CB, CC.CD

FORMAT (3E13. 6)

FORMAT (35E13 &)

FORMAT (1X,3E13. &)

FORMAT (1X,5E13.6)

FORMAT (215,2E13. 6)

FORMAT (1E16.8,7E15. 8)

FORMAT (1X,2I5,2E13. &)

FORMAT (1X,8E15.8)

FORMAT (1X,2I5,1E13. 6, 315. 8)
SET THE BASIC PARAMETERS

READ (7,1020) UW, TW,BETA

READ (7.1020) EC,PR,WN

READ (7.,1030) DX, DY,EPS.KE,CITA
WRITE (8.1050) W, Tiv, BETA

WRITE (8. 1050) EC, PR, WN

WRITE (8,1060) DX, DY,EPS,KE.CITA

READ (7,1070) MEND, N, XSTA, XMAX
READ (7.1080) (U(I),V(I),T(I), ROCI),
WL, VP(I), TP(1),ROP(1), I=1,N)

WRITE (8,1090) MEND,N. XSTA, XMAX
WRITE (8, 1100) (UCI),V(I), T(I),RO(I), UP(I),W(I), TP(I1),ROP(I),
I=1,10)

0.3




KE1=KE+1. D+00

- KE 2=KE #KE

e KE3=KE2-1. D+00

g KE 4=KE 1 +KE 2 -
RR CITA1=1. D+00-CITA

N CITA2=CITA1/CITA

CITA3=2 D+00*CITA

C1TA4=CITA3-1. D+00

T CITAS=2. D+00#C ITA1
3$' CI1=CITA®*DX
0 CI2=CITA1%DX
R CI3=2. D+0O*CI1
e C14=2 D+00*CI2
g CK1=KE4/KE2
- CK2=KE *KE 1
Wl CKI=KE #KE4 *KE4
o CK4=(2. D+00+3. D+00*KE ) /KE1
o CK5=(1. D+00+3. D+O0#KE) /KE
Ll CK6=1. D+00/CK2
Tl
f\ C CALCULATE THE FLOW PROFILES AT THE NEXT GRID LINE (M+1)
s C- === == == T
: MUW=TW % *WN
) XCRI=1. D+00/MUW
e X=XSTA
" 10 CONTINUE
a4 DO 950 L=1, 10
é& DO 900 M=1, MEND
h18 N1=N-1
o N2=N-2
i X=X+DX
- IF (X. GT. XMAX) GO TO 999
80 C-=-====- e T
o c STORE THE VALUES OF GAS VELOCITY AT THE PREVIOUS LINE (M)
AR 000 C = 2 e e e e - — ., e - = -
4"0 O T T i T
o] DO 20 I=1,N
N 20 RU(CI)=U(I)
. C - = = = = = = -t m e e e e - e e e - e e e - -, - - - = -
Y
Ros c SOLVE THE NEW GAS TANGENTIAL VELOCITY U AT THE NEXT
3 c GRID LINE (M+1) USING SIX-POINT IMPLICIT SCHEME
{s C - = = = = = = — = - e e = e e cm -t t e m e - .- -
%) c SET THE BOUNDARY CONDITIONS AT THE LINE (M+1)
" sttt ettt
- U(1)=Uu
oD U(N)=1. OD+00 )
I
]
,'! )
X D.4
R
J*.:
iwte
un
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c SET THE FLOW PARAMETERS AT THE OGRID POINT (N+1) TO CALCWLATE
C THE FIRST AND SECOND ORDER DIFFERENCES AT THE GRID LINE (H)
C m = = m e m - e e .- .. .- - .- =~ --—- - -
U(N+1)=U(N)
T(N+1)=T(N)
C ————————————————————————————————
c CALCULATE THE INITIAL VALUE OF SOME COEFFICIENTS
C ————————————————————————————————
CALL VALU1(CI1,CI2,C13,CI4, DY, DY1)
c T e
c CALCULATE THE COEFFICIENT MATRIX ELEMENTS
C ————————————————————————————————
CALL PARA1(1,U,V,R0O,RUI,RVI)
RUB (1) =RUI
RVB (1) =RV]I

CALL PARAZ2(1., T,MULl.,DMUI, MDR, MNU)

CALL PARAS(1, DX, MDR, MNU, DMDB. DMNB, U, V, T, UD, VD, TD)
DO 110 I=2.,N

CALL PARAL1 (I, VU, V,RDO,RUI,RVI)

RUB(1})=RUI

RVB(I)=RV1

CALL PARA3(I, KE2, KE3, U, DEVI)

CALL PARA3 (I, KE2 KEG T, DETI)

DY 1=DY 1 #KE

DTI=DETI/DY1

CALL PARA4 (I, KE,KEL1, VU, DDEUI)

CALL PARAZ (L, T, MUI, DMUI, MDR, MNU)

CALL PARAS (I, DX, MDR, MNU, DMDB, DMNB. U, V, T,UD, VD, TD)
ROMD=ROP (I )#DMDB(I)

UD I=ROMD#UF (I)

CR{(1)=CITA®ROMD

CRB(I)=CITA1#ROMD

DMUI=DMUI#DTI

CALL VALUZ (KE, KE2)

110 CALL COEF1<(¢1,U,RUI,RVI,MUI,DMUI, DEUI, DDEUI, UDI, CR,. CRB, A, B, C, D)

CALL COEF2(U. A,B,C,D)

DO 120 I=2,Nl
120 CAaLL THOM1(I,A,B.C,D)
DO 130 I=1, N2

J=N-1
130 CALL THOM2(J, VU, A, B, D)
C = = = = = ;o e e = m e e e e e e e e e e e e e e e e = e = = -
c TEST FOR THE OUTER EDGE OF BOUNDARY LAYER
c ————————————————————————————————
o COMPARE THE DIFFERENCE OF FLOW PROPERTIES BETWEEN THE LAST
C TWO CONSECUTIVE GRID POINTS WITH THE SPECIFIED TOLERANCE
C = = = = = e = e = e = - - e e e e, e e e e e e e e m e e o= -
ITEST=0

140 ERROR=DABS (U(N)-U(N1))
IF (ERROR. LT.EPS) GO TD 150
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el ol

170

150

180

'
1
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ADD A NEW GRID POINT AT THE NEW GRID LINE (M+1)

- e e Em e o e am em e e em A e -

ITEST=ITEST+1

U(N+1)=U(N)

VIN+1)=V(N) |
T(N+1)=T(N)

RO (N+1)=RO (N)
UP (N+1)=UP (N)
VP (N+1)=VP (N}
TP AN+1)=TP (N)
ROP(N+1)=ROP(N)

CALCULATE THE MATRIXx COEFFICIENTS AT THE NEW GRID POINT

- e em e mm e e e e e em e m e wm e e e m em =

- e e e e e e e em e e o e e e e e e e e = e W e o

IF (ITEST. 67.1) 60 TO 160
CALL THOM1I (N, A, B:C, D)
CALL THOMZ (N, U, A, B, D)

60 TO 170

MUlI=1 D+00

DMUI=0. D+00

DEUI=0 D+00

DDEUI=C. D+00
ROMD=ROP (N ) #DMDB(N)

UD I=ROMD#UP (N)
CR(N)=CITA®ROMD
CRB(N)=CITA1#ROMD

CALL VALUZ (KE., KER2)

CALL COEF1 (N, U, RUI,RVI,MUL,DMUI, DEUI, DDEVUI., UDL, CR, CRB, A, B, C.D)
CALL THOMI(N, A, B.C.D)
CALL THOMZ2 (N, U, A, B. D)
N=N+1

N1=Ni+1

Ne=N2+1

RU(N)=RU(N1)

RUB (N)=RUB (N1)

RVB (N)=RVB (N1)
DMDB(N)=DMDE(N1)
DMNB(N)=DMNEG (N1)

UD (N)=UD(N1)

VD (N)=VD(N1)
TD(N)=TD(N1)

IF (N.EQ 100) €0 TO 999
60 TO 140

IF (ITEST. EQ. O0) 6O TO 200
DO 180 I=1.N2

J=N-1

CALL THOM2(J, U, A, B, D)
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PN
i g ey

e

pOONOON
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&3
i 00
5
b c - -
K C
C - -
o
A ¢ - -
K c
) ¢ - -
4
h
.
%
L5
4
2
l
3
I
'y
'
A
by 210
i cC - -
k)
a C
0 c - -
;\
4 220
&
N 230
)
L
l
‘.l-
I
|
L0
3

- * 4

4

TR IS o'y W AN
WARTIN LRSS

L e T e PR

SOLVE THE NEW GAS TEMPERATURE T AT THE NEXT GRID
LINE (M+1) USING SIX-POINT IMPLICIT SCHEME

SET THE BOUNDARY CONDITIONS AT THE LINE (M+1)
T(1)=TW
T(N)=1. 0D+00

T T T T e . T T

- e e e e e e e am er e em e e am e me e e me me e e @ wn e o= me e e

CALL VALUL(CI1,CIZ2,.CI13.,C14,DY, DY1)

- e e em e em e ar e e e wh em e e wm e owm e e e e e e e e em me wm e

CALCULATE THE COEFFICIENT MATRIX ELEMENTS
DO 210 I=2, N1

CALL PARAL(I. U, V., RO, RUL,RVI)
RUI=CITA®RUI+CITA1#RUB (1)

CALL PARA3 (I, KE2, KES, U, DEVI)

CALL PARA3 (I, KE2, KE3, T, DETI)

DY 1=DY 1 #KE

DUI=DEUI/DYI

DTI=DETI/DPY1

CALL PARAZ (I, KE2, KE3, RU, DEVUI)
DUI=CITA#DUI+CITA1#DEUI/DY1

CALL PARA4 (I, KE,KEL, T, DDETI)

CalLlL PARAZ (I, T, MUI, DMUI, MDR, MNU)
UPU=CITA® (UP(I)-U(I))+CITA1®(UP(I)-RU(I))
UDI=ROP(I1)#UPU=*DMDB(I)
EDM=EC#DUI #DUI #MUI #DX

ERD=EC+#UDI *UPU

ROMN=ROP (I »#DMNB(I)

TPT=ROMN®#TP (1)

TDI=EDM+ERD+TPT

CR(I)=CITA®#ROMN

CRB(I)=CITA1#ROMN

CALL VALUZ (KE, KE2)

MUI=MUI/PR

DMU1=DMUI=DTI/PR

CaLL COEF1(I.T,RUI,RVI,MUI.DMUI,DETI,DDETI, TDI.CR.CRB, A.B.C, D)
catl COEF2(T.A.B,C,D)

-— o mm e o e e e we e e e e @ e e e e mm e e e e e e e s s o e

SOLVE THE GAS TEMPERATURE PROFILE BY THOMAS ALGORITHM
DO 220 I=2,N1

CALL THOM1 (I, A,B,C,D)

DO 230 I=1.N2

J=N-1

CALL THOM2(J, T,A. B, D)
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SO ( = = = == == = - o= = - == - s s e e s s - - -~
mﬁﬁ‘ C CALCULATE THE GAS DENSITY PROFILE AT THE GRID LINE (M+1)

€

e R e e e
. DO 240 I=1.N

. 242 ROCI)=1.D+00/T(I)

e T i A
3%& ¢ SOLVE THE GAS NORMAL VELO ITY PROFILE AT THE GRID LINE (M+1)
=».9'!.|i L T R T T S N
BEAS DO 310 I=1,N

e 310 RUCII=ROCII®UCT)

A DO 320 I1=2.N ‘
el
Y BE(I)=RU(I)~RUE (I)+RU(1~-1)-RUB(I-1)

R 2 C(D)=RVEBtI)=-RVB(I-1)
) CF=DY/ (CI2%kE"
KR D(1)=0 D+00
DO 330 1=2. N
b CF=CF#KE
At 232 D(I)=D(I-1)-CITA2#C(1)-CF#B(I)
Ry DO 340 I=1.N
f.:i;". 347 VIDI=D(I)®#T (I
e C m s e e e e e e e e e e e e e e e e e e e et e e m .= -
c SOLVE THE NEW PARTICLE PARAMETERS (UP, VP, TP, AND ROP) AT THE
i c GRID LINE (M+1) USING FOUR- OR SIX-POINT IMPLICIT SCHEME
‘\,t? ( = = = = = 0 e e e e, e e e e e e e e e e e e e e e = = = = -
Y
b < CALCULATE SOME COEFFICIENTS OF THE FINITE DIFFERENCE EGUATION

‘ C = = = = =2 = & e = m 2 % e e e m e e e = e = - - -

%)

1 DO 410 I=1,N
UDI=UD (1)

g VDI=VD (1)

am{ TDI=TD(I)

fo CALL PARA2(I.T,MUI.DMUI, MDR, MNU)

b CALL PARAS (1, DX, MDR, MNU, DMD, DMN, U, V, T, UD, VD, TD)

Syteg UD(I)=CITA®UD(I)+CITA1%UDI
VD(I)=CITA#VD(1)+CITAI*VDI

S TD(I)=CITA*TD(1)+CITA1%#TDI

S DMD(1)=CITA*DMD(I)

ﬁ o DMN(I)=CITA*DMN(1)

RN, DMDB(1)=CITAI#DMDB (1)

Gl 410 DMNB(I)=C1TA‘*DNNB(I)

) ¢ - - B e,
S, c STORE THE VALUES OF PARTICLE VELOCITIES AT THE PREVIOUS LINE
igh%

) (= - - == == == == == =~~~ R e
I; DO 420 I=1,N
o, RUB(I)=UF (1)
55; 420 RVB(1)=VP(1I)

= = = = ~ - e e e e e e we e mm m e e we e e e em o e m e o= e e

il < SOLVE THE PARTICLE TANGENTIAL VELOCITY UP AT THE LINE (M+1)

. )

oy Ll R
%ﬂj IF (X.LT. XCRI) GO TO 530
4
*&
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¢ " SOLVE THE DIFFERENCE EQUATIONS USING SIX-POINT SCHEME

¢ SET THE BOUNDARY CONDITIONS AT THE LINE (Me1y

ST T eopeoo T T TTTToTTTTTTeT
UP (N)=1. D+00

C CALCULATE THE INITIAL VALVE OF SOME COEFFICIENTS

- m e e e e e e e m e e e we e e e e e e e ee e e e e m e oem me w

CALL VALU1(CI1,CI2.C13,C14,DY, DY)

- - - - e = - - - - e e e e e e e e o e e e e oae em mm we we w e e e

- CALCULATE THE COEFFICTIENT MATRIX ELEMENTS
DD 510 1=2.Ni
RUI=UP (1)
RVI=VP (1)
CALL PARAZ (1, KE2: KEZ, UF, DEUPI)
DDEW1I=0 D+00
MUI=0. D+00
DMUI=0. D+00
UPDI=UD(I)
CALL VALUZ (KE, KE2)
510 CaLL CDEFI(I.UP.RUI,RVI.MUI.DHUI.DEUFI,DDEUPI.UPDIrDﬂD.DﬁDB:H
1 AIBICID)
CALL COEF2(UP, A, B.C.D)
DO 520 I=2.N1
Sl CALL THOM1 (1,A,B,C,D)
DO 525 I=1.,N2

J=N-1
Ses CALL THOMZ (UL UF, A, E. D)

GO0 TO 560
C = o = = = =2 o o e ;o - e e e - e e e e e e e e e e e m e e o= -
C SOLVE THE DIFFERENCE EQUATIONS USING FOUR~POINT SCHEME
C_..-—--_-—_——--_—————————_.—_———-—.
ST DX 1=CIl1#KE /DY

Dx2=CI2+«KE /DY

DO 540 I=1, N1
DX1=Dx1/KE

DXx2=DXc/KE
A(1)=DX1+«VP (1)

4 B(IN=UP(I)-AC1)+DMD(I)
\ DXVP=DX2#VP (1) :

4 S40 C(I)=—DXVP#UP (I+1)+(UP(I1)+DXVP-DMDE (1) )#UP (1)+UD(])
5 . UP (N)=1. D+00

DO 550 I=1,N1

J=N-1

550 UP(UJ)=(C(J)-A(J)#UP (J+1))/B(J)
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“ d CALCUWATE THE VALUES OF UP AT THE HALF POINT (M+@) f
'k' C---_-_--____..——.._-.._——--_..--———_
: 560 DO S$70 1=1.N
570 UD(II=CITA&UP(1)+CITA1#RUB(1)
Uty ( =~ = = = & = 0 & 0 o 0 o ;e e e e e e e e e e e e e m e e = = - -
IR
:ﬁﬂ C SOLVE THE PARTICLE NORMAL VELOCITY VWP AT THE LINE (M+1)
o d BY MEANS OF THE FOUR-POINT SCHEME 1
o o T R
el DX1=C1I1#KE /DY
Dx2=C12#KE /DY )
;t;,;u DO 610 I1=2,N
Wyl DX 1=DX 1 /KE
e Dx2=DX2/KE
ﬂmf B(l)=-Dx1sVF(I)
g ACI)=UD:1)-LEtI)+DMD 1)
DXVP=DX2#VF (1)
'l 10 CCI)=CUD(1)~-DxVP~DMDB (1)) #VF(1)+DXVP2VP (I-1)+VD(I)
3\' VP (1)=0 D+00 '
i DO 620 I=Z. N
i 50 VP(I)=(C(I)=ECI)#VP(I-1))/ACT)
-;!‘I' C = = = & = = 0 0 6 ;e v o e m e e e e = e e e e e e e = e e o= -
.47,
c CALCULATE THE VALUES OF VP AT THE HALF POINT (M+8)
.
e O i T e
J
R DO 630 I=1,N
K7 630  VD(D=CITA®W (1)+CITA1#RVB (1)
e o T T T T T T
h C SOLVE THE PARTICLE TEMPERATURE TP AT THE LINE (M+1)
c_-_.._____..__.__——__.._— ———————————
o IF (X LT XCRI) 6D TO 730
b Cmm ~ e m e e e e e e e e e et e e ee et - -
Dk, C SOLVE THE DIFFERENCE EQUATIONS USING SIX-PDINT SCHEME
e e i
) C SET THE BOUNDARY CONDITIONS AT THE LINE (M+1)
C_-——-—-———---—-——-—-—--——-- ———————
0 TP(1)=TW
4'. TP (N)=1. D+00
l (‘—-.____———..__—-———.._———-——_ ———————
$,' C CALCULATE THE INITIAL VALUE OF SOME CDEFFICIENTS
W A e T R
2 CALL VALU1(CI1,CI2,CI3, C14,DY,DY1)
0 O e
ﬁ% C CALCULATE THE COEFFICIENT MATRIX ELEMENTS
S O,
9q: DO 710 1=2.N1
AL RUI=UD (1)
= RVI=VD(I)
e CALL PARA3 (I, KE2, KE3, TP, DETPI) 4
YA DDETPI=0 D+00
s MUI=0. D+00
L "
el DMUI=0 D+0O0 ]
: TPDI=TD(I)
1;‘;9 /
i D.10
s'
-"::‘
SO
.‘.::'.‘
L)

\~-
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CALL VALUZ (KE, KE2)
710 Catl COEF1(I,TP,RUI,RVI,MUI,.DMUI, DETPI.DDETPI, TPDI., DMN, DMNB,
: 4. L. C.D)
CALL COEFZ(TF. A/ B.C.D)
DO 720 I=2., N1
ol CALL THOYMI(I. A, B.C. D)
DO 725 I=1.N2
J=N-1
B CALL THOMZ (U TP, A, B. D)
60 TC 805

- e e e e e m e e e e @ w e e e e e me e e e em e me wm owe Sm e me e e

C
o SOLVE THE DIFFERENCE EQUATIONS USING FOUR-POINT SCHEME
{ = = = = = = 0 == _ - — —m e . e e, e - e - m e = m . - - = - -
T Dx1=C11#WE 7Dy
Dxa=Cle#nE /Dv
DG 740 I=1.N! ’
Dx1=DX1/KE
DXz2=DXea/KE
ACI)H)=Dr1sVD (1)
B(IN)=UDt(1)~A(1)+DMN(I)
DXVP=Dx2+VvD(1)
T4l C(IN=-DxvVP2TF(I+1 )+ UD(1)+DXVP~-DMNB{(I))#TF (1)+TD(1)
TP (N)=1 D+00O
DO 750 I=1.N1
J=N-1
TPIDN={C(I)~A(IIRTP(J+1))/B(J)

. e e e e e e e e e mm e e e e mm eem mm W em e m e e me e e e wn em e

SOLVE THE PARTICLE DENSITY ROP AT THE LINE (M+1)

- e e e e e e e e em wm o mm e e e owm e W e e am e e e e o e e e e

IF (X LT XCRI)» GO TO €830
GET THE PARTICLE DENSITY BY THE ASSUMFTION THAT THERE 1S NO
DEPOSITION OF PARTICLES ON THE SURFACE OF THE PLATE
DO 820 I=1,N
82l ROP(I)=BETA#RO(1)
G0 TO 900

‘N

[

NN N Nl e I NN
o}
!

— e e wm e e e e e em e e e e wm e e oam e e e me ae e e e ee e am em e e

c
r SOLVE THE DIFFERENCE EGUATIONS USING FOUR-POINT SCHEME
1 = ¢ e wm e e e e e e e o e e e e e e e e e a e e e e e e e mw e
637  DX1=CI1#KE /DY
DX2=C12#KE /DY
DO 840 I=1, Nl
DX 1=DX 1 /KE
DX2=DX2/KE
ACI)=DX1#VD(I)
B(I)=CI1TA3#UP(1)-CITA4#RUB(I)
1 +CITA#DX1% (VP (I+1)-2 D+00#VP (1))
2 +CITA*DX2# (RVB(I+1)-2. D+OO#RVB (1))
840  C(I1)=-DX2#VD(I)#ROP (I+1)+(CITAG#UP (1)+CITAS#RUB(I)
1 -~CITA1#DX1#(VP(I+1)-2. D+OO#VP (1))
2 -CITA1#DX2#(RVB(I+1)-2 D+00#RVB(I)))#ROP(1)
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ROP (N)=BETA

DO 850 I=1.N1

J=N-~1

ROP () =(C(HH-A(N#RDP(J+1))/B(J)

CONTINUE

CALCULATE THE CHARACTERISTIC QUANTITIES OF BOUNDARY LAYER
FLOW: SHEAR STRESS. HEAT TRANSFER AND DISPLACEMENT THICKNESS

- aee em e e m e ee e e e o e e e e e em ar me @ e w e e e e o e

GET THE SHEA~® STRESSE AT THE WALL

CMDY=CKI1&MUW/ /LY
SHEAR=(UW(2)-U1))~(U(3)-U(1))/CR2+(U(4)-U(1))/CK3
SHEAR=SHEAR&#CMDY

- e Em e e e e o e e e w e e m e we e omn e e en e e e e e e e e

GET THE HEAT TRANSFER AT THE WALL

CMDY=CMDY/ (PR*EC)
HEAT=(T(2)~T(1))1=(T(3)=T(1))/CK2+(T(4)-T(1))/CK3
HEAT=-HEAT*CMDY

GET THE DISPLACEMENT THICKNESS USING THREE-POINT DIFFERENCE
FORMUL A

DY 1=DY /(& D+O0O*KE)

DD 910 I=1.N

RU(IN=1 D+00-RU(I)

RU(N+1)=0. b+00

THICK=0. D+00

DO 920 I=2.N

DY 1=DY 1 #KE

SUMI=CKRA*RU(I~-1)+CHS*RU(I) —CKE#RU(T+L)
SUMI=SUMI#*#DY1}

THICK=THICK+SUMI

- e e e e e e e e e e e e Em e ae e e e e me w e e e e e e e e

DUTPUT THE COMPUTATION RESULTS AT THE GRID LINE (M+1)
WRITE(B,1110) M. N, X. SHEAR. HEAT., THICK
WRITE(B,1100) (WI), V(I), T(I),RO(CI),
UPCI), VP(I), TP(1), ROFP(I), I=1,N)
IF (X-XMAX) 10, 10, 999
sSTOP
END
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SUBROUT INE PROGRAMS

SUBROUTINE PARA1(1.WJ, WV, WR, RUI,RVI)

CALCULATE SOME PRODUCTS USED WHEN SOLVING THE FINITE
DIFFERENCE EGUATIONS

IMPLICIT REAL#B(A-H,0~2)

DIMENSION WU(1), WV(1), WR(1)

RUI=WR (I I#WUCI)
RVI=WR (1) #WV(])

RETURN
END

SUBROUTINE PAFA2(I, T, MUI, DMUI, MDR, MNU)

CALCULATE SOME PARAMETERS USED WHEN SOLVING THE FINITE
DIFFERENCE EQUATIONS

IMPLICIT REAL®*B(A-R.0-2)

REAL#8 MUI. MDR. MNU, NU

DIMENSION T(1)

COMMON /G PR. WN,S,REYP,EC

MUT=T(I)#alN
DMUI=WN#MUI /T (1)

DrR=1 D+00D

NU=2 D+00

MDR=MU ] «DR
MNU=MUI#NU/ (2 D+O0#PR)

RETURN
END

- e e e e e e e e e m e e e wm e e em e e e e e e am e e e o

SUBROUTINE PAFA3(I, KES, KE3, W. DEWI)

CALCULATE THE FIRST ORDER DIFFERENCE USED WHEN SOLVING THE
FINITE DIFFERENCE EQUUATIONS

IMPLICIT REAL#B(A-H,0-2)

REAL®*8 KEZ, KE3

DIMENSION W(1)

DEWI=W (I+1)+KE3#W (1 )~-KER2#W(I-1)

RETURN
END

--------
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SUBROUTINE PARAA4Q(I., KE, KE1, W, DDEW1)

CALCULATE THE SECOND ORDER DIFFERENCE USED WHEN SOLVING THE

FINITE DIFFERENCE EGUUATIONS

IMPLICIT REAL®B(A-MH,0-2)

REAL#8 KE, KE} -
DIMENSIDN W(1)

(aBeNale]

DDEWI=W(I+1)-KEI1#W(I)+KE®W(]I-1)

RETURN 1
END

C--__.___-__..__,-_._-.___-__ ————————

SUBROUTINE PARAS(I, Dx. MDR., MNU, DMD, DMN, U, V, T, UD, VD, TD)
CALCULATE SOME PARAMETERS RELATED TO THE INTERACTION TERMS
BETWEEN GES AND PARTICLES

IMPLICIT REAL#B(A-H,0~-2)

REAL#8 MDR, MNU

DIMENSION DMD(1),DMN(1),UC1),V(1), T(1),UD(1),VD(1),TD(1)

OO

DMD (1) =DX#MDR
DMN(1)=DX#MNU
UD(I)=U(I)#*DMD(I)
vD(I)=V(I)*DMD(I)
TDCI)=T(1)=#DMNCT)

RETURN
END

- em e e e e = e e e e e e e e e e e e e e e e e em e o e e

SUBROUTINE VALU1(CIL,CI2,CI3,C14,DY.DY1)
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IMPLICIT REAL#8(A-H.0-2)
REAL#8 KE., KE1

COMMON /H1/ KE,KE1, KE2, KE3
COMMON /H2/ CA.CB. CC.CD

DY 1=KE t #DY
DY2=DY 1#DY /KE
CA=CI1/DVY1
CB=C12/DY1
CC=C13/DY2
CD=CI4/DY2

RETURN
END
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SUBROUTINE VALUZ(KE, KEZ2)

I
{
'

C o e e o o e e e e e e e e e e e e e e e e e e e e e e e = -
C CALCULATE THE VALUES OF SOME COEFFICIENTS AT THE GRID POINT
C___-__-___..___...____-__.__..._..—_-——

IMPLICIT REAL#8(A-H. 0-2)

REAL®B KE, KE2

COMMON /H2/ CA.CB, CC. CD
.

CA=CA/KE

CB=CB/KE

CC=CC/KED

CD=CD/KEZ
.

RE TURN

END
C_—....._._..____..‘-____—._——-_.__-——-—-_

SUBROUTINE COEF1{(I.,W. RUI,RVI, MUI, DMUI, DEWI, DDEWI, WDI, CR. CRB,

* AIB‘CJD)
C_.___________5____._....__.___---__-.*
¢ CALCULATE THE COEFFICIENT MATRIX ELEMENTS A.B,C. AND D FOR
¢ THE CRANK~NICOLSON SCHEME
C—--______._..._..__.__..._.._—-—__._-_—--.-..._

IMPLICIT REAL®8(A-H,0-2)

REAL#B KE. KE1, KE2, KE3, MUI

DIMENSION W(1),CR(1).,CRB(1),A(1),B(1),C(1),D(1)

COMMON /H1/ KE,KE1, KED, KE3

COMMON /HZ/ CA,CE. CC.CD
C

RVT=RVI-DMUI

CRVT=CA#RVT

CMU=CC#MUT

A(1)=CRVT-CMU

B(I1)=RUI+KE3*CRVT+KE1#CMU+CR(I)

C(1)=~KE2#CRVT~KE#CMU

DEWI=DEWI# (R

DDEWI=DDEWI#CL

D(I1)=(RUI-CRB{1))#W(1)-RVT#DEWI+MUI*DDEWI+WDI
¢

RE TURN

END

s e
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SUBROUTINE COEF2(W, A, B,C.,D)

SPECIFY THE COEFFICIENT MATRIX ELEMENTS A(1),B(1),C(1),D(1)

-_ e E e m e e e e e mm ome e e e e e em ae e e e e e e e M @ am e
»

IMPLICIT REAL®#B(A~-H.0-2)
DIMENSION W(1),A(1),B(1),C(1),D(1)

- e e e es e e e me e e e mm o e

A(1)=0. D+00
B(1)=1 D+00O
C(1)=0 D+00O
D(1)=W(1)

RETURN
END

R e T T

SUBROUTINE THOM1(1,A, B,C,D)

- e e e e e e e e e e e e e e e

ESTABLISH UPPER TRIANGULAR MATRIX (FORWARD ELIHINATION) FOR
SOLVING THE TRI-DIAGONAL SYSTEM FOLLOWING THE THOMAS ALGORITHM

- e e e e e e e m a

IMPLICIT REAL®#B(A-H,D~-2)
DIMENSION A(1),B(1),C(1),D(1)

BC=C(I)/B(]1-1)
B(I)=B(l)-BC*xA(I—-1)
D(I)=D(I)-BC&#D(I-1)

RETURN
END

-— e e e wm e e e e o e e o e e e e e -

SUBROUTINE THOM2(I. W, A, B, D)

m e e e e o e e e e wm me mm e we me w we e em e e w e

GET SOLUTION (BACK SUBSTITUTION) FOLLOWING THOMAS ALGORITHM

- e em e e o e e e

- e e e e e e em mr we e e we e e ee e e o e e e ow e

IMPLICIT REAL®#B(A-H,0-Z)
DIMENSION W(1),A(1).,B(1),D(1)

WD)=(D(I)-A(I)®W(I+1))/B(1)

RETURN
END
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APPENDIX E

AN ADDITIONAL DISCUSSION REGARDING THE ASSUMPTION OF THE PARTICLE-DENSITY

PROFILE AFTER THE CRITICAL POINT

In the foregoing analysis, it was pointed out that at the critical
point, the particle velocity at the wall vanishes. Physically, upy = 0
means that the particles will stop and stay at the wall. Consequently, a
lot of particles would gradually accumulate on the surface and it would
result in a great increase of the particle density at the wall unless a
diffusion mechanism is the predominant process. Therefore, contrary to a
diffusion-controlled process (as assumed in the previous analysis), the
accumulation of particles on the surface represents another extreme limiting
case for a gas-particle system. It is not the purpose of this discussion to
obtain information concerning particle deposition on the flat plate,
although such data can be used in some practical problems (for example,
retardation, accumulation and impingement of particles on solid surfaces
t ave considerable effects on the erosion of the surfaces). The aim here is
to attempt to gain more insight into the assumption of the particle-density
profile when x > x.pnj.

In the following, it is assumed that the accumulation of the particles
at the wall is allowed and the thickness of the particle accumulation layer
can be neglected compared with the boundary-layer thickness. The particle
density will eventually become very large at the wall, So it is reasonable
to specify the reciprocal of particle density at the wall to be zero. Then
an additional boundary condition is obtained and the six-point scheme can be
applied to the continuity equation of the particle phase. Using the
reciprocal of the density as a new dependent variable, the continuity
equation (2.16) can be written as

w2 Ay ev 2 A ey -0 (E-1)
Pox "o, Py o pp X %y

With the quotient expressions for the six-point scheme (3.1)-(3.4), its
finite-difference form is

91 91 91 9
Al (2~ + B [=— + C. [=— =D E-2
"(p )m+1,n+1 "(p zn+l,n n(p )m+1,n-1 n (E-2)
P P Y
9
= E-3
An = 3, YPm+o,n (E-3)
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o By = u + a,(K2-1)y - -
.55::' n Pm+ o n{ ) Pm+o, ( Pm+1,n pm,n) an&p N (E-4)
28 9
! C, = ~ak? -
. n n me+e,n (E~5)
OO
iy D, = + (1-9) (u u + b Av 1
R " Prso,n * ¢ )y 1, Pn,n ) * B p"'*"’"](pp m,n
Bl
»‘;:"A - bnvp +0 A(l—) (E"G) '
! men h mon
R
;:::;' where
KR Av = BAv + (1-9)av
o Pm+0,n Pm+1,n (1-8) Pm,n
G
,) The boundary conditions at the wall and the outer edge of the boundary-layer
}l are:
o

' &) =0 (E-7)

: p mHl,1
,"‘(
oo
Y
oy (_1_.) =1 (E-8)
e p m1,N B
S8
S By solving the difference equation (E-2) with the boundary conditions (E-7)
Y _\Z and (E-8), a numerical solution is obtained for the same freestream and wall
1';, conditions, In Figs. E-1 to E-4, these results are compared with those
v results obtained based on the assumption of p, = Bp for x > xcpj. It is
o interesting to note that the resulting boundary-layer characteristics (i.e.,
‘:;;:::' shear stress, wall heat-transfer and displacement thickness) are almost the
:::v:: same for these two different methods, despite the fact that there are large
(f.oﬁ;, differences between the particle density profiles, especially near the wall.
o It provides the evidence that the particle density has a very small effect
. on dusty-gas boundary-layer flows in the quasi-equilibrium and
g near-equilibrium regions. As mentioned before, this approximate treatment
g of the particle density (that is, for x » Xcpis Pp = Bp is assumed across
the whole boundary layer) results in satisfactory accuracy on the
ue boundary-layer flow-profiles and characteristic quantities except the
B particle density itself. It is due to the fact that the particle and gas
o.’,*i’ phases are already in a near- or quasi-equilibrium state after the critical -
:::ﬂ point (x > x.pi).
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